10 Networking in Games

Tvorba a dizajn pocitacovych hier
Navrh a vyvoj pocitacovych hier



Motivation

 Online statistics & analytics

* Online storage of user state

 Online software and content updates

« Communication with 3 parties

« Multiplayer

* We will focus on the hardest of these, multiplayer



Types of Multiplayer

« Asynchronous (Clash of Clans)

« Turn-based games (Chess, Hearthstone)

« Simple real-time games (Clash Royale)

« Fast action games (CS:GO, Fortnite, Overwatch...)
« MMO games (World of Warcraft...)



Multiplayer — Basic idea

* Player input modifies game state
« Game state is synchronized across the network
« Each player modifies only a subset of the game state

 The usual approach uses client-server communication
* The whole level has one server — could be one of the players or a dedicated server
 Other players are connected to the server



Client-Server model

« Connection-based approach

« Server — provides a service (game state)

* Client - requests the service from a server (access/modify game state)
« Multiple clients communicate with one server, never between each other

* Centralized system, high demands on server resources
 Especially for MMO games such as World of Warcraft

 Low player numbers can be handled by a normal PC and internet
connection
 Counter-strike, Starcraft, ...



Relation to the Observer pattern

« Game state on the server (subject) is being observed by clients (observers)

* Clients get notified on state changes

* Clients send their data to modify the state
* But the server decides what to modify (to avoid cheating)

 Both parties receive data with a delay



Networked Game through Views

* We implement two additional classes to enable networking

 Remote game view
« Remote game logic
 Proxy design pattern

7~

Authoritative Server

~ ™

Human
Game View

. 7

ﬁ

Remote
Game View

. J

Remote Game Client

Remote Hurman
Game |@-Game Events-» Gamafion

Logic

|




Remote Game View

* On the server, a remote player is just like an Al agent
* What happens inside the game view is totally different

» Game events are packed up and sent via TCP or UDP to a client

* Need to compress data, select only important game events
* No need to send “object moved" if several such events occurred since the last packet

was sent, we send only the most recent

* Receives game commands from the client

 Should not trust these entirely
* Need sanity checks to prevent hacking
« After filtering impossible commands, they are passed on to the game logic



Remote Game Logic

* The game logic is an authoritative server, it represents the real game state

» Clients need a copy of the game state to be able to present the player the game
correctly

 They also need to account for network delays and network errors
 This is the job of Remote Game Logic

* It is similar to server game logic
* There is a need to simulate without receiving events from the server
« Saves bandwidth

* Increases responsiveness

* Allow for “against the rules” corrections when the server sends the correct
data



Typical Client-Server interaction

* Client sends a request to create a new connection for it on the server
 Server receives the request and prepares a connection, then notifies the client
* The client sends data through the connection (over and over)

» Whenever the server receives data from a client, it is notified and responds based
on the data

 The client is finished (player turned off the game) and notifies the server to abort
the connection

* If any of the sides does not respond within a reasonable time frame, a time-out
occurs, and the connection is lost
« Handle the disconnect automatically



Peer-to-peer networking

* Alternative to client-server

» Decentralized system

* All nodes are equal, there is no server

* Distributed resources, part of resources available on each node

 Very rarely used in games
 Not reliable communication between multiple players
« More vulnerable to cheating attempts



Multi-server network architectures

* Used for MMOs

» Multiple distributed servers that communicate between each other and
each has several clients connected

* The servers connect nearby clients, clients that are in the same location...

« Complicated load balancing

« Can sustain millions of players (World of Warcraft)

 But not all interacting at the same time
* In-game locations have their limits on the number of players



Low-level protocol

« UDP — User Datagram Protocol
» Connection-less communication
Packets are always sent to a specific IP address and port
Unreliable protocol
Order of packets is not guaranteed, need to split your data into packets
Delivery of packets is not guaranteed (1-5% loss)
» Duplicated packets can occur

« TCP/IP — Transmission Control Protocol
» Connection-based communication
Guaranteed order and reliability
Splits your data into packets automatically
Flow control
Easy-to-use, just like writing/reading data to files



Which one is used in
real-time multiplayer games?
UDP or TCP?



Problems with TCP/IP

* Input and output streams (“files”) are buffering data on both sides and

decide when to send the data

« Lots of small-sized data (such as player commands) might be buffered for seconds
before sending

* Possible fix is using TCP_NODELAY to send data immediately
* If packets are lost or come out of order, they are sent again or re-ordered

* If it happens again, it tries again
 This may cause huge latency problems (seconds)

* TCP is basically UDP with added overhead, that splits your data into
packets, numbers them, and then checks them on the other side



High latency in TCP

* If we have problems reconstructing the packets, stalls occur
* Depends on the ping between both sides
» On packet loss, stalls might reach duration of 3 X latency
* If new data was sent during that time, TCP forces it to wait for the old data
* Therefore, most real-time games use UDP
 But with added features

* TCP can used for games that do not need fast real-time communication

* Turn-based games

 Online statistics, analytics

« Saving user data

« Important communication — players buying something, ...



Problems with network games

 High latency
« “Lag” — Round trip time (RTT)

« How long it takes to send a packet to the other network node and receive an answer
« Latency = 0.5*RTT

« “Jitter” — Fluctuation of latency between packets

* Packet loss — as mentioned before



Avoiding problems

« Reducing the distance between end nodes

« 12.000km distance, light travels at 300.000km/s => 40ms latency
 This is the lowest bound, since we are limited by the speed of light

 Getting a better internet connection ©
 Not really an option, since players want to play in their current setup

 Not much we can do to reduce these

« We can improve by:
 Sending consistently large packets to avoid jitter
» Reducing packet size — sending only essential data
 Not requiring packet ordering (UDP in favor of TCP)
« Split data based on importance and required latency (combining UDP & TCP)



Latency compensation techniques

 “Bandwidth problems can be cured with money. Latency problems are
harder because the speed of light is fixed — you can't bribe Physics.”

* There is nothing we can do about latency, so let’s try to compensate
 Prediction techniques
« Manipulation of game time to equalize gameplay

« Data compression

» We need to be careful, since we might be opening doors for cheating
 Cheat detection



Prediction

* The client predicts the server response and presents the game state as it is
« The game responds immediately to user input

« The game state might diverge from the actual (server) game state
 Higher latency = bigger differences in states
 Repairing of game state when the server message is received

* Player “prediction”
* Let the user interact, expect what will be received concerning only this player

* Opponent prediction
* Predict positions (and lots more...) of entities not controlled by the player



Player “prediction”

* We need to keep the game state reasonable while we wait for the server to
respond

* The player is allowed input, however some of their actions might be undone later,
when the client repairs the game state according to the server

* Introducing tears and “teleports” is a negative side-effect, however not so bad as
stalling until new information is received from the server

 Can be in the form of calculating correct physics, allowing player movement and
actions

More responsive = Less consistent
More consistent = Less responsive



Opponent prediction

« We take the opponents’ entities, their last known position and where they are
heading

- Predict position based on direction and speed

» Take it as the truth if we do not receive an update
« which will be retrospective!

« We might need synchronized Random Number Generators (RNGSs)
« An opponent fires a gun, it does between 15 and 30 damage
* RNG can make the difference between a unit dying or surviving
* Pseudo-RNG are initialized with the same seed value on all clients and the server
« Usually used in RTS games (Warcraft 3 does this)
 Avoiding RNG in game design is also valid



Opponent prediction in FPS games

* Position P, Velocity v, last received packet at time t,, current timeis t

 Very simple linear prediction: P(t) = P + v - (t - ty)
« We additionally use the physics engine to avoid displaying the enemies running
through walls

» Unsolvable problem
* Firing at the opponent at a predicted position
» The server receives only your position and direction when you shoot
* You clearly see that you are firing directly at them
* The server knows better, and the opponent does not die



Adjust send rate

* Do not send all data every frame

* If game is running at 200 FPS, update just a small amount of necessary
data every frame

« CS:GO — most servers run at 64 updates per second (tick rate)
* CS:GO tournaments = 128 tick rate

* Different data in-game can have different send rate

 Should not depend on framerate
« All network communication usually runs on a separate thread



Time warping

 The client has fired a shot
¢ At tO — O
* The server received the message

« Att; = 100ms
» The enemy moved left in the 100ms

* Red boxes — Show the position of the enemy where it was on the client in
timety, =0
* Blue boxes — Position estimated by the server after a time warp

* The server rolls time back
 Using the game time from the client



Opponent prediction in RTS games

 Each unit has received a command
* Clients receive only a list of commands for a list of units

» Units can keep executing their commands
» Must be deterministic

* More consistent than FPS games
« Commands for one unit do not change as often as the position or rotation of the player

« Example:
« Max actions per minute for RTS players is around 600
10 actions per second = 1 action/packet every ~100ms
« Compared to 128 tick servers in CS:GO = 1 packet every ~8ms



Data compression

 Lossless compression
* Opponent prediction

 Delta compression
« Send only changes of the state, not the whole state

* Interest management
« Send only info that the player can see
* (Peer-to-peer)

« Update aggregation
« Group multiple messages (can be from different moments in time) into one

* Problematic with real-time games



Cheating

« We cannot trust packets we receive from the clients
« Someone might be altering them

« Or it might not be a game client at all, but a custom-made program trying to mess up
our server

« We need some “correctness” detection on the server

* Ignore packets that update position of players too rapidly
* Ignore unnatural Interest management packets

« Most typical cheats
« Wall-hack, map-hack, speed-hack, aim-bot



Wall-hacking/map hacking

« Wall-hacking: seeing through walls in FPS games
« Map-hacking: ignoring fog of war in RTS games
« Showing enemy units in fog of war

* The hack alters the game’s window and renders additional objects on top
of the game’s output image

« Monitors memory/packets to identify position of units
« All unit info is received over the network — man-in-the-middle attacks
« Special algorithms to find the data in memory
 Or a directly altered executable



Speed-hack

* Alters memory of the process
» Send “impossible” movement data to the server

* If the server is not validating it, it just accepts incorrect data



Aim-bot

» Read positions of enemies from process memory or network

* Directly alter rotation of player in memory
 Or generate fake mouse movement



Anti-cheating

* Network encryption
» SSL or other encryption methods

« Monitor memory reading/writing attempts
 Usually by a different anti-cheat process

 Encrypt data in memory

* Protect executable from cracking attempts
 Denuvo

» CheatEngine is a simple tool for reading/writing memory
« Use at your own risk, never to cheat online
* Removing challenges makes the game less fun



Networking in Unity

» Simple communication over HTTP/HTTPS
« UnityWebRequest, C# HttpClient/HttpRequest

« UDP/TCP communication
» C# TcpClient, TcpListener, UdpClient, Socket

 Unity NetCode - part of DOTS, recently came out of preview
 Unity had UNET before, but it has been deprecated for 2+ years

* Mirror — based on UNet, offers different low level transports
« free & open-source, but you need your own server

 Photon — several different solutions



Photon

« Has several solutions for networking, each with specific use-cases
« Quantum — deterministic engine, high cost
 Realtime — cross-platform, for various engines, lower-level
« PUN (Photon Unity Networking) — easy to use, similar to Unet, built on top of Realtime
 Bolt — for Unity, relatively easy to use, built on top of Realtime

« Fusion (in preview) — new, Unity-only, has various improvements over PUN and Bolt
« allows different network architectures

 Has free 20 CCU (concurrent users) for testing

« Games built with Photon (that we know of)

« Humankind, Robocraft, Phasmophobia, VRChat, Golf Clash, Ylands, Outward, Prison
Architect, Descenders



Target Player Count
Core-Features
Tick based simulation
Client Side Prediction
Lag Compensation
Snapshot Interpolation
Replication System
Delta Snapshots
Eventual Consitency
Performance
Allocations (Runtime)
Performance (Benchmarks)

Bandwidth

Bespoke Prebuilt Functionality

Area of Interest (AOI)
Network Animator
Network Character Controller (KCC)

Auth. Rigidbodies w/ CSP

Bolt

=
Fusion




References

« Armitage, G., Claypool, M., and Branch, P. Networking and Online Games:
Understanding and Engineering Multiplayer Internet Games. Wiley, 2006.

» McShaffry, M., and Graham, D. Game Coding Complete, Fourth Edition.
Course Technology PTR, 2012.

* Hall, R., and Novak, J. Game Development Essentials: Online Game
Development. Cengage Learning, 2008.

* Novak, J. Game Development Essentials: An Introduction. Cengage
Learning, 2011.



