
05 Game and
Engine Architecture

Tvorba a dizajn počítačových hier

Návrh a vývoj počítačových hier

Game development is software
development

• Use of well-defined design patterns

• Relatively strict structure of a game and game engine

• Not only graphics and physics

• Although lots of concepts are borrowed/required from these fields

2

Game architecture

• What are all the parts a game consists of?

• How do they fit together?

• Relying on established standards will make your life easier

• You will create maintainable and reusable software pieces

• Going against the stream might pay off in terms of efficiency

• Engine custom-made for a specific game – e.g. Minecraft

3

Change
The only constant

in software development

Game architecture layers

• Architecture with lots of layers (think TCP/IP)

• Every subsystem can be put into one of these categories:

• Application layer

• Deals with the hardware and the operating system

• This is usually handled by the game engine

• Game logic layer

• Manages your game state and how it changes over time

• Game view layer

• Presents the game state with graphics and sound

• Similar to the well-known design pattern Model-View-Controller

• Changes in hardware/OS should not affect the game logic or game view layers

• Just like MVC

5

Game logic layer

• This is your game – all its mechanics
• Without input systems, rendering & audio playback…

• Contains subsystems that manage the game world state

• Communicating state changes to other systems

• Examples:

• Playing a sound when you fire a gun

• Playing an animation for the gun as it fires

• Updating health of enemy hit by the shot

• Also systems that enforce rules of your game world

• Physics system

• …

6

Game view layer

• Presenting the game state to the user

• Translating input into game commands

• Not only drawing the game state on the screen

• Other views include:

• AI agents get a “view” of the game state

• A remote player gets a view of the game state

• The state observed from game logic is the same

• But they do different things

7

An example – racing game

• Game logic

• Holds the data that describes cars and tracks

• Car weight distribution, engine performance, tire performance, fuel efficiency, …

• Track shape, surface properties, physics

• Input is only regarding what the actual driver does

• Steering, acceleration, braking

• Output

• State changes and events

• Car and wheel positions and orientations, damage stats, how much ammo is left

• Events: car collisions, passing checkpoints, …

8

Racing Game – Human Game View

• A lot of work to do to output video and audio
• Draw the scene, spawn particles for particle effects, play audio, force feedback

• Read the input devices
• “Accelerator at 100%”

• “Steer left”

• Sends these commands back to the game logic

• What happens when you press SPACE (emergency brake)
1. The view sends a message to game logic

2. Game logic sets the emergencyBrakeOn to true

3. Game logic notifies the view that state changed (for a racing game, it happens even
without input if any of the cars are moving)

4. The view responds by playing a sound and spawning a dust particle effect on tires

9

Racing Game – AI Game View

• Receives the same game state and events as the human view

• Which track, weather, car positions and orientations

• Can react in response to events (such as “Go!”) by sending info to the

game logic

• Set accelerator to 100%

• Steer left at 50%

• Commands remain the same!

10

Game views

• Very flexible

• You can have any number of human or AI views

• Trivial to swap humans with AI and vice versa

• A game view that just records game events into a buffer

• You might replay them later

• The game logic is kind of disabled during replay, since a view is sending all the events

• With a little extra work, you can get a rewind feature working

• Need to handle undoing events (continuous Memento pattern?)

• Or a special game view that forwards game status to a remote player

• Handle network logic with regard to game events

• Pack and send, receive input, unpack, create events
11

Game views (2)

• Views can give advantages or disadvantages

• 4:3 aspect ratio might give smaller field of view than 16:9 aspect ratio

• AI might know more about game state than the player (see through walls)

• Game views are difficult to get used to

• Unity does not offer a strict separation of views from logic implicitly

• Using it explicitly will make more maintainable code

• Even if you do not strictly separate, it’s good practice

• You should know which layers are communicating

12

13

Application layer

14

Reading input

• Provides a layer between the OS and the rest of the game application layer

• The state is translated into game commands

• Should be configurable

• Game state should never change directly from reading user input

• Not flexible

• Lots of changes when controls change

• Unity offers both ways

• Input.GetKey() is direct

• Input.GetAxis() / Input.GetButton() is indirect and configurable inside the editor or during

runtime

• New Unity Input System is indirect

15

File System and Resource Caching

• Reading and writing from disk and other storage media

• Managing resource files can be complicated

• One of the hidden systems is the resource cache

• Commonly used assets are always in memory

• Rarely used assets are in memory only when needed (end-game video)

• The resource cache tries to “fool” the game into thinking that all the assets are

available in memory

• If all goes well, the cache can load files before they are needed

• Cache misses might occur if it fails to load something in time

• Solve by loading screens or small lags

16

Resource Loading in Unity

• SceneManager.LoadScene()

• SceneManager.LoadSceneAsync()

• Everything that is referenced must be in memory

• When a scene loads:

1. Read scene and load all assets that it references – prefabs, textures, models…

2. For each of those assets, load all assets that they reference (unless already loaded)

• Resources.Load/Addressables allows more fine-grained memory control

• Can have a “weak reference” and load manually with Addressables

• Can load by name from a folder with Resources.Load or Addressables

17

Initialization, Main Loop, and Shutdown

• Most software waits for user interaction, doing almost nothing

• Can have lots of these running with minimal overhead

• Games are simulations that have a life of their own

• Player input is not required for the game to continue simulation

• The system controlling the game simulation is the main loop or game loop

• Usually has three stages

1. Grab user input

2. Update game logic

3. Present the updated game state through all views

• Rendering, playing sounds, sending state over the internet

18

Simple game loop

19

FPS limited game loop

20

Advanced game loop

21

Very advanced game loop

22

Game loop in Unity

• Game loop handled implicitly

• Querying user input is handled by the engine

• Game programmers are given two main callbacks
• Update()

• Updates as often as possible

• Called once for each frame rendered (lower FPS => less updates)

• FixedUpdate()

• Updates in fixed intervals (by default every 20ms => 50 FixedUpdates per second)

• Called once before each physics engine step

• Rendering is done by the engine as well!
• We only set what will be rendered

• The actual rendering is executed somewhere inside Unity

• Exception: Using low-level rendering access with the GL or Graphics class

23

How Unity game loop looks (simplified)

24

float timer = 0;
while (true)
{

while (timer > fixedTimeStep)
{

FixedUpdate();
PhysicsUpdate();
timer -= fixedTimeStep;

}
Update();
LateUpdate();
Render();
timer += deltaTime;

}

Unity Execution Order

• You need to know what happens and in which order!

• This is the most important graph for understanding Unity

http://docs.unity3d.com/Manual/ExecutionOrder.html

25

http://docs.unity3d.com/Manual/ExecutionOrder.html

• From

https://docs.unity3d.com/Manual/

TimeFrameManagement.html

26

https://docs.unity3d.com/Manual/TimeFrameManagement.html
https://docs.unity3d.com/Manual/TimeFrameManagement.html

Other Application Layer Code

• System clock

• String handling

• System libraries

• Threads and thread synchronization

• Network communication

• Initialization

• Shutdown

• (Scripting language)

27

Game logic

28

Game logic

• Defines the game universe

• What things (entities) are there

• How they interact

• Defines how game state can be changed by external stimulus

29

Game state and data structures

• A game needs to store its game objects in a container

• Must be able to traverse quickly to change game state

• Should be flexible as to what data it will hold

• Special game data (hitpoints, inventory, …) are stored in some custom data structure

• In Unity:

• Upgraded scene graph hierarchy

• Retrieve objects either by pointing directly to them, or special functions

• Static functions part of GameObject:

• GameObject.Find(), GameObject.FindWithTag(), GameObject.FindObjectsWithTag()

• Implicitly traverses a tree or a hash table to efficiently find the objects

• Special game data stored as serialized variables of script components

30

Game state and data structures

• Easy to confuse game logic representation with the visual representation

of objects

• Amount of damage a weapon deals is stored in game logic

• The weapon’s model, textures, icons are only relevant to the game view

• Another example:

• Skeletal mesh object that is used for skinning the character when rendering

• It seems that it has something to do with the character’s weight

• Skeletal mesh – view, weight – logic (probably for physics calculations)

31

Entity-Component-System (ECS)

• Design pattern used to store and manipulate game state

• Favors composition over inheritance

• Entities consist of Components

• Each component has a single responsibility

• Systems run in background and handle component changes

• One system serves only one purpose

• Physics System, Player Damage System

• Components register in one or more systems

• Entities are affected indirectly (through their components)

32

ECS in current Unity

• Entity = GameObject – name, tag, active/inactive, layer…

• Component = Component (MonoBehaviour)

• System

• Configurable but not directly visible

• Can create own systems

• Individual components register with their respective systems

• Split across multiple components

33

Example of systems

• Collider and Rigidbody register with the Physics System

• MeshRenderer, Camera, Light register with the Rendering System

• Scripts register with the Scripting System and Event System

• You create other systems through MonoBehaviours – Damage System,

Items & Inventory…

• Health, Weapon and Explosive are all part of the damage system

34

35

Physics and Collision

• Rules of your physical game universe

• No need for over-complicated physics to make a game fun

• If our game is completely abstract, unrealistic physics will not be disturbing the
player that much

• If, however, we simulate the real world, small errors might cause players to be
very disturbed by those errors

• Usually, rigid body dynamics with dynamic objects being mostly convex

• Few exceptions:
• Ragdoll physics

• Fluid simulation

• …

36

Game Events

• When the game state changes, a lot of other systems need to react

accordingly

• Game logic is responsible for generating these events and passing them

further

• Subsystems register with the Event Manager to listen to events that they

react to

• Clean and efficient separation of unrelated code with a simple abstraction

and the use of a unified event interface

• The Observer pattern

37

Process Manager

• The game logic is composed of small parts of code that need to be executed
periodically for the game to work correctly

• Multiple processes that are completely independent (but we might provide
dependencies)

• Mostly script executions
• If we have a scripting language

• Otherwise, it’s just one class per operation to keep things simple

• Chaining processes together (throwing a grenade, explode on collision)

• Unity handles this by calling the Update() (or other event) functions on all script
components attached to currently enabled game objects in the scene
• You may sometimes come up with code that needs a certain order of execution, AVOID IT

as much as you can

38

Command Interpreter

• Provides a good separation of the game view and game logic

• Need to interpret commands sent by AI or human players

• Unified interface, no mixing of unrelated code

• Provides more efficient debugging

• You can send separate commands while debugging

• This is usually what consoles are for

• Not the hardware, the Counter-Strike console

• The Elder Scrolls also had a console

• As well as many others

39

Game view - Human

• Views are a collection of systems that communicate with game logic to present the game

to an observer

• Observers can be human, AI,…

• The view responds to game events as well as controller input

• Works as a translator component that outputs game commands on one side and the

presentation of the game on the other side

40

Graphics Display

• Renders the objects in the scene

• Renders the user interface (HUD)

• Must draw the scene as fast as possible

• Lots of problems
• Which objects to draw

• How to handle complex transforms

• How to handle complex visual effects

• Handles animation interpolation

• Lighting conditions

• Post-processing

• Level-of-detail

• …

41

Graphics Display (2)

• For very complex 3D scenes, need a lot of pre-computation

• Light maps

• Potentially visible sets (PVS)

• Light Probes

• The artist must be aware of the game engine capabilities

• Lots of constraints

• Unity tries to handle all of this

• You might reduce performance of the game without even knowing it

42

Audio

• Playing sounds

• Three main areas

• Sound effects – simple, when an event occurs, play some audio

• Music – a little harder when done right

• Tone of music adjusting according to game situation (Elder Scrolls, Halo, …)

• Speech – very tricky

• Lip-sync and storage of lots of sounds are the main problems

• Take into account 3D audio

• 3D positions of listener and sources

43

Audio in Unity

• AudioSource and AudioListener components

• AudioMixer, groups, filters, effects

• Can use other audio engine – FMOD, Wwise…

44

User Interface Presentation

• Every UI must be very specific and adjusted to the game

• Re-using components is possible, but only to a certain extent

• Sometimes you need a completely new GUI component to fit the game

• A compass, special inventory, …

45

Unity UI

• Uses separate rendering from 2D and 3D

• All components rendered on a Canvas

• Objects use 2D sprites for rendering

• Has numerous tools for anchoring, scaling for different resolutions,
events…

• Can do screen-space, camera-space and world-space UI

• Can mix UI rendering and standard rendering

• Alternative: UI Toolkit

• https://docs.unity3d.com/Manual/UI-system-compare.html

46

https://docs.unity3d.com/Manual/UI-system-compare.html

Options

• Configuring the view

• Resolution, aspect ratio

• Controls

• Sound effects

• Graphics quality and performance

47

References

• McShaffry, M. & Graham, D. (2013). Game Coding Complete. Boston, Mass:

Course Technology PTR. 4th ed.

• Chapter 2 – What’s in a game?

• http://gameprogrammingpatterns.com/

• http://entropyinteractive.com/2011/02/game-engine-design-the-game-

loop/

48

http://gameprogrammingpatterns.com/
http://entropyinteractive.com/2011/02/game-engine-design-the-game-loop/
http://entropyinteractive.com/2011/02/game-engine-design-the-game-loop/

	Slide 1: 05 Game and Engine Architecture
	Slide 2: Game development is software development
	Slide 3: Game architecture
	Slide 4: Change The only constant in software development
	Slide 5: Game architecture layers
	Slide 6: Game logic layer
	Slide 7: Game view layer
	Slide 8: An example – racing game
	Slide 9: Racing Game – Human Game View
	Slide 10: Racing Game – AI Game View
	Slide 11: Game views
	Slide 12: Game views (2)
	Slide 13
	Slide 14: Application layer
	Slide 15: Reading input
	Slide 16: File System and Resource Caching
	Slide 17: Resource Loading in Unity
	Slide 18: Initialization, Main Loop, and Shutdown
	Slide 19: Simple game loop
	Slide 20: FPS limited game loop
	Slide 21: Advanced game loop
	Slide 22: Very advanced game loop
	Slide 23: Game loop in Unity
	Slide 24: How Unity game loop looks (simplified)
	Slide 25: Unity Execution Order
	Slide 26
	Slide 27: Other Application Layer Code
	Slide 28: Game logic
	Slide 29: Game logic
	Slide 30: Game state and data structures
	Slide 31: Game state and data structures
	Slide 32: Entity-Component-System (ECS)
	Slide 33: ECS in current Unity
	Slide 34: Example of systems
	Slide 35
	Slide 36: Physics and Collision
	Slide 37: Game Events
	Slide 38: Process Manager
	Slide 39: Command Interpreter
	Slide 40: Game view - Human
	Slide 41: Graphics Display
	Slide 42: Graphics Display (2)
	Slide 43: Audio
	Slide 44: Audio in Unity
	Slide 45: User Interface Presentation
	Slide 46: Unity UI
	Slide 47: Options
	Slide 48: References

