08 Math for 3D games

Tvorba a dizajn počítačových hier Návrh a vývoj počítačových hier Michal Ferko 9. 11. 2023

What we need the math for

- Placing/moving/rotating/scaling objects
 - Creating hierarchies of objects
- Animation
- Rendering
- Physics & simulation

Not just 3D, also 2D (but it's simpler)

Floating point numbers

- IEEE 754 standard
- Single (32-bit) and double precision (64-bit)
 - GPUs almost exclusively single precision
 - Most engines perform all operations as 32-bit floats
- GPU FLOPS
- Half precision sometimes used on GPUs to speed up execution

Vectors and points

- All math we need for 3D games revolves around vectors and points
- We use them to represent 3D locations and directions
- Transforming, animating, rendering, physics...
- 2D variants for 2D games, but the 3rd dimension is still often used
 - Determine which objects are in front of which objects
 - Simulate 3D-like behavior

Vectors and Points - Unity

- Vectors and points share classes
 - Vector2, Vector3, Vector4
- Used for positions, directions, other spatial functionality
- Basic operations included
 - Addition, subtraction, multiplication, magnitude, normalization
 - Angle, Dot, Cross, Reflect...
 - Mathf class for basic operations
 - Random class for RNG
- Transform.position, Transform.lossyScale (+local variants)
- Transform.rotation is a Quaternion
- Transform.forward, Transform.up, Transform.right

Transformations

- Affine Transformations talk by Jim Van Verth
- Orientation Representation talk by Jim Van Verth
- Transform Translate/Rotate/Scale
- Look At

Affine Transformations

- A mapping between affine spaces
- Preserves lines (& planes)
- Preserves parallel lines, but not angles or distances
- Can represent as

$$T(\mathbf{x}) = \mathbf{A}\mathbf{x} + \mathbf{y}$$

Affine Space

- Collection of points and vectors
- Represented using a **frame**: < 0, **i**, **j** >
 - The frame defines a coordinate space
- Vector: $\mathbf{v} = x\mathbf{i} + y\mathbf{j}$ $x, y \in \mathbb{R}$
- Point: $P = x\mathbf{i} + y\mathbf{j} + 0$ $x, y \in \mathbb{R}$

Affine Transformations

- Maps from space to space by using frames
- Determines how axes change A
- Determines how origin changes y

$$T(\mathbf{x}) = \mathbf{A}\mathbf{x} + \mathbf{y}$$

Examples

• Translation: $T(\mathbf{x}) = \mathbf{x} + \mathbf{t}$ (axes don't change)

$$\mathbf{t} = \begin{bmatrix} t_x \\ t_y \end{bmatrix}$$

• Rotation: $T(\mathbf{x}) = \mathbf{R}\mathbf{x}$ (origin doesn't change)

$$\mathbf{R} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

• Scale: $T(\mathbf{x}) = \mathbf{S}\mathbf{x}$ (origin doesn't change)

$$\mathbf{S} = \begin{bmatrix} s_{\chi} & 0 \\ 0 & s_{y} \end{bmatrix}$$

Combining Transforms

$$T(\mathbf{x}) = \mathbf{A}\mathbf{x} + \mathbf{y}$$

$$S(\mathbf{w}) = \mathbf{B}\mathbf{w} + \mathbf{z}$$

$$S(T(\mathbf{x})) = \mathbf{B}(\mathbf{A}\mathbf{x} + \mathbf{y}) + \mathbf{z} = \mathbf{B}\mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{y} + \mathbf{z}$$

Order dependent!

$$S(T(\mathbf{x})) \neq T(S(\mathbf{x}))$$

Can also do inverse

$$T^{-1}(\mathbf{z}) = \mathbf{A}^{-1}\mathbf{z} - \mathbf{A}^{-1}\mathbf{y}$$

Graphics APIs use matrix form

$$\mathbf{T} = \begin{bmatrix} \mathbf{A} & \mathbf{y} \\ \mathbf{0}^T & 1 \end{bmatrix}$$

Can then use simple matrix multiplication (column vectors)

$$T(S(x)) = \mathbf{T}(\mathbf{S}\mathbf{x})$$

- Is a 4x4 matrix for 3D
- But most engines combine TRS into a single transform
 - Translation vector (position in Unity)
 - Scale vector (scale in Unity)
 - Rotation (rotation in Unity) Euler angles in Unity, but are quaternions under the hood
 - Transform.rotation is of type Quaternion

Unity transform details

- Unity combines all into a 4x4 matrix that's sent to the GPU for rendering
- GPU takes the mesh vertex position and multiplies with the matrix
 - Result is final position in world space

```
var t = transform;
var matrix = Matrix4x4.TRS(t.localPosition, t.localRotation, t.localScale);
var matrix2 = transform.localToWorldMatrix; // Same result if has no parent
```

- If the object has a parent, it's more difficult
 - Have to combine all parent transforms (multiply all matrices)
 - Result is a single 4x4 matrix to get world space coordinates
 - transform.localToWorldMatrix

Orientation vs Rotation

- Orientation described as relative to a reference frame
- Rotation changes object from one orientation to another
- Orientation can be represented as a rotation
 - From the reference frame < 0, i, j >

- Representing rotation is tricky in 3D we need to do
 - Concatenation add two rotations together to get the resulting rotation
 - Interpolation animate between two orientations
 - Rotation itself applying rotation transform to vertex positions

Orientation Representation

Name	Concatenation	Interpolation	Applying rotation	Intuitive	Example
3x3 matrix	Easy, multiply matrices	Hard	Easy, multiply vector by matrix	No	$\begin{pmatrix} 0.41 & -0.67 & 0.61 \\ 0.86 & 0.08 & -0.5 \\ 0.29 & 0.74 & 0.61 \end{pmatrix}$
Euler angles	Hard, can lead to gimbal lock	Hard, cannot be direct	Easy, convert to matrix	Yes	(45°, 30°, 85°)

Axis+Angle $\mathbf{v} = (1,0,0)$ Easy, convert to Hard **Easy** Yes $\alpha = 45^{\circ}$ matrix $\mathbf{q} = \left(\frac{\sqrt{2}}{2}, 0, 0, \frac{\sqrt{2}}{2}\right)$ Easy, spherical Quaternions Easy, convert to Easy No linear matrix interpolation For $\mathbf{v} = (0,0,1)$, $\alpha = 45^{\circ}$ (slerp)

Quaternions

- Generalized complex numbers
- In 2D ($i^2 = -1$)
 - A complex number $a + b\mathbf{i}$ that's normalized: $\sqrt{a^2 + b^2} = 1$
 - Represents rotation of angle α , where $a = \cos \alpha$, $b = \sin \alpha$
- A quaternion is basically that, but in 3D
 - Written as $w + x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$ or (w, x, y, z)
 - That's normalized: $\sqrt{w^2 + x^2 + y^2 + z^2} = 1$
- $\mathbf{i}^2 = \mathbf{j}^2 = \mathbf{k}^2 = \mathbf{i}\mathbf{j}\mathbf{k} = -1$
- Represents rotation of angle β around axis (a_x, a_y, a_z)
- Where $w = \cos \beta$; $x = a_x \sin \beta$; $y = a_y \sin \beta$; $z = a_z \sin \beta$

Quaternions

$$\mathbf{M_{q}} = \begin{pmatrix} 1 - 2y^2 - 2z^2 & 2xy - 2wz & 2xz + 2wy \\ 2xy + 2wz & 1 - 2x^2 - 2z^2 & 2yz - 2wx \\ 2xz - 2wy & 2yz + 2wx & 1 - 2x^2 - 2y^2 \end{pmatrix}$$

- Can easily transform into a matrix
- Easy math for rotating vectors without using matrix form: $\mathbf{p}' = \mathbf{q} \ \mathbf{p} \ \mathbf{q}^{-1}$
- Easy uniform interpolation with slerp
- Unity uses it for all rotations
 - For transforms, animation, interpolation...
 - Provides easy conversions into it

```
var q1 = Quaternion.AngleAxis(45, new Vector3(0, 1, 0));
var q2 = Quaternion.Euler(45, 30, 85);
var q3 = Quaternion.Slerp(q1, q2, 0.3f);
var q4 = Quaternion.FromToRotation(Vector3.forward, Vector3.right);
Vector3 newPosition = q4 * transform.position;
```

$$\operatorname{slerp}(\mathbf{p}, \mathbf{q}: t) = \frac{\sin((1-t)\alpha)}{\sin \alpha} \mathbf{p} + \frac{\sin(t\alpha)}{\sin \alpha} \mathbf{q}$$

 $\cos \alpha = \mathbf{p} \cdot \mathbf{q}$

Quaternions

- Good to know how they work
- You will never have to do Quaternion math directly
 - Can use other formats, engines have support for it
- Always converted to a 4x4 matrix before being used on the GPU

Why 4x4 matrix?

- We want to transform points as well as vectors
- Using a single transform
- We can differentiate between points and vectors:
 - Point: $P = (P_x, P_y, P_z, 1)^T$
 - Vector: $\mathbf{v} = (v_x, v_y, v_z, 0)^T$
- And if we combine 3x3 rotation matrix with 3x3 scale matrix and translation vector:

$$\mathbf{M} = \begin{bmatrix} \mathbf{S} \cdot \mathbf{R} & \mathbf{t} \\ \mathbf{0}^T & 1 \end{bmatrix}$$

Then all the math works flawlessly!

4x4 matrix allows other transforms

- You can even use non-affine transformations with 4x4 matrices
- And using these, you even can transform points to vectors
 - $\mathbf{v} = (a, b, c, 0)$, $\mathbf{T}\mathbf{v} = P$, P = (d, e, f, 1) (T non-affine transform)
- This is then called **homogenous coordinates**
- For these transformations, you can have a result of (d, e, f, g), where $g \neq \{0,1\}$. In those cases, the resulting point is:

$$\left(\frac{d}{g}, \frac{e}{g}, \frac{f}{g}, 1\right)$$

This is used for e.g. perspective camera

3D Transformation Pipeline

- We want to solve 3 problems
 - Construct hierarchies of objects
 - Transformation of object combined with its parents
 - Manipulate camera
 - Viewing transformation
 - Render object to screen
 - Projection/screen transformation
- We have objects as 3D meshes (list of vertex positions in some space)
 - How do they become pixels?

Scene Graph

- Basic structure for hierarchical scenes
 - Used almost anywhere, even for e.g. video editing
- It is a tree structure directed acyclic graph
 - Nodes can have any number of children

Scene Graph

Object transformation

- Each scene graph node has an affine transformation
 - Affine transform is a combination of Translation, Scale & Rotation
 - Affine transform always outputs a 4x4 matrix
 - Transform component in Unity
- Final object transformation
 - Its own transform
 - Multiplied by the parent's transformation
 - Multiplied by the grandparent's transformation
 - ...
 - The result is a multiplication of several 4x4 matrices
 - ⇒ one 4x4 transformation matrix

Different spaces and transforms

- We determine object positions in the "world" (T_{Model})
 - Created from a hierarchy of transformations from object through its parents
- By placing the camera in the world, we determine from where (position, direction) we are looking at the world (T_{View})
- The type of camera (orthographic/perspective) determines our projection $3D \Rightarrow 2D (T_{Projection})$
- We select the part of the window we render to $(\mathbf{T}_{Viewport})$

Spaces in Unity

- Object ⇒ World taken from object transform (transform.localToWorldMatrix)
- World ⇒ Eye taken from camera transform (camera.transform.localToWorldMatrix)

Real-time Rendering Pipeline

• The GPU renders 3D scenes from triangles

Offline rendering is very different (ray tracing instead of rasterization)

References

- Mathematics for 3D Game Programming and Computer Graphics
- Essential Mathematics for Games and Interactive Applications: A Programmer's Guide
- http://www.essentialmath.com/tutorial.htm