08 Math for 3D games

Tvorba a dizajn počítačových hier
Návrh a vývoj počítačových hier
Michal Ferko
9. 11. 2023

What we need the math for

- Placing/moving/rotating/scaling objects
- Creating hierarchies of objects
- Animation
- Rendering
- Physics \& simulation
- Not just 3D, also 2D (but it's simpler)

Floating point numbers

- IEEE 754 standard
- Single (32-bit) and double precision (64-bit)
- GPUs almost exclusively single precision
- Most engines perform all operations as 32-bit floats
- GPU FLOPS
- Half precision sometimes used on GPUs to speed up execution

Vectors and points

- All math we need for 3D games revolves around vectors and points
- We use them to represent 3D locations and directions
- Transforming, animating, rendering, physics...
- 2 D variants for 2 D games, but the $3^{\text {rd }}$ dimension is still often used
- Determine which objects are in front of which objects
- Simulate 3D-like behavior

Vectors and Points - Unity

- Vectors and points share classes
- Vector2, Vector3, Vector4
- Used for positions, directions, other spatial functionality
- Basic operations included
- Addition, subtraction, multiplication, magnitude, normalization
- Angle, Dot, Cross, Reflect...
- Mathf class for basic operations
- Random class for RNG
- Transform.position,Transform.lossyScale (+local variants)
- Transform.rotation is a Quaternion
- Transform.forward, Transform.up, Transform.right

Transformations

- Affine Transformations - talk by Jim Van Verth
- Orientation Representation - talk by Jim Van Verth
- Transform Translate/Rotate/Scale
- Look At

Affine Transformations

- A mapping between affine spaces
- Preserves lines (\& planes)
- Preserves parallel lines, but not angles or distances
- Can represent as

$$
T(\mathbf{x})=\mathbf{A x}+\mathbf{y}
$$

Affine Space

- Collection of points and vectors
- Represented using a frame: $\langle 0, \mathbf{i}, \mathbf{j}\rangle$
- The frame defines a coordinate space
- Vector: $\mathbf{v}=x \mathbf{i}+y \mathbf{j} \quad x, y \in \mathbb{R}$
- Point: $P=x \mathbf{i}+y \mathbf{j}+O \quad x, y \in \mathbb{R}$

Affine Transformations

- Maps from space to space by using frames
- Determines how axes change - A
- Determines how origin changes - \mathbf{y}

$$
T(\mathbf{x})=\mathbf{A x}+\mathbf{y}
$$

Examples

- Translation: $T(\mathbf{x})=\mathbf{x}+\mathbf{t}$ (axes don't change)

$$
\mathbf{t}=\left[\begin{array}{l}
t_{x} \\
t_{y}
\end{array}\right]
$$

- Rotation: $T(\mathbf{x})=\mathbf{R x}$ (origin doesn't change)

$$
\mathbf{R}=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]
$$

- Scale: $T(\mathbf{x})=\mathbf{S x}$ (origin doesn't change)

$$
\mathbf{S}=\left[\begin{array}{cc}
s_{x} & 0 \\
0 & s_{y}
\end{array}\right]
$$

Combining Transforms

$$
\begin{gathered}
T(\mathbf{x})=\mathbf{A} \mathbf{x}+\mathbf{y} \\
S(\mathbf{w})=\mathbf{B} \mathbf{w}+\mathbf{z} \\
S(T(\mathbf{x}))=\mathbf{B}(\mathbf{A} \mathbf{x}+\mathbf{y})+\mathbf{z}=\mathbf{B A x}+\mathbf{B y}+\mathbf{z}
\end{gathered}
$$

- Order dependent!

$$
S(T(\mathbf{x})) \neq T(S(\mathbf{x}))
$$

- Can also do inverse

$$
T^{-1}(\mathbf{z})=\mathbf{A}^{-1} \mathbf{z}-\mathbf{A}^{-1} \mathbf{y}
$$

Graphics APIs use matrix form

$$
\mathbf{T}=\left[\begin{array}{cc}
\mathbf{A} & \mathbf{y} \\
\mathbf{0}^{T} & 1
\end{array}\right]
$$

- Can then use simple matrix multiplication (column vectors)

$$
T(S(x))=\mathbf{T}(\mathbf{S} \mathbf{x})
$$

- Is a 4×4 matrix for 3D
- But most engines combine TRS into a single transform
- Translation vector (position in Unity)
- Scale vector (scale in Unity)
- Rotation (rotation in Unity) - Euler angles in Unity, but are quaternions under the hood
- Transform. rotation is of type Quaternion

Unity transform details

- Unity combines all into a 4×4 matrix that's sent to the GPU for rendering
- GPU takes the mesh vertex position and multiplies with the matrix
- Result is final position in world space

```
var t = transform;
var matrix = Matrix4x4.TRS(t.localPosition, t.localRotation, t.localScale);
var matrix2 = transform.localToWorldMatrix; // Same result if has no parent
```

- If the object has a parent, it's more difficult
- Have to combine all parent transforms (multiply all matrices)
- Result is a single 4×4 matrix to get world space coordinates
- transform.localToWorldMatrix

Orientation vs Rotation

- Orientation - described as relative to a reference frame
- Rotation - changes object from one orientation to another
- Orientation can be represented as a rotation
- From the reference frame $<0, \mathbf{i}, \mathbf{j}>$
- Representing rotation is tricky in 3D - we need to do
- Concatenation - add two rotations together to get the resulting rotation
- Interpolation - animate between two orientations
- Rotation itself - applying rotation transform to vertex positions

Orientation Representation

| Name | Concatenation | Interpolation | Applying rotation | Intuitive | Example |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 3x3 matrix | Easy, multiply
 matrices | Hard | Easy, multiply
 vector by matrix | No | $\left(\begin{array}{ccc}0.41 & -0.67 & 0.61 \\ 0.86 & 0.08 & -0.5 \\ 0.29 & 0.74 & 0.61\end{array}\right)$ |
| Euler angles | Hard, can lead to
 gimbal lock | Hard, cannot be
 direct | Easy, convert to
 matrix | Yes | $\left(45^{\circ}, 30^{\circ}, 8^{\circ}\right)$ |
| Axis+Angle | Hard | Easy | Easy, convert to
 matrix | Yes | $\mathbf{v}=(1,0,0)$
 $\alpha=45^{\circ}$ |
| Quaternions | Easy | Easy, spherical
 linear
 interpolation
 (slerp) | Easy, convert to
 matrix | No | $\mathbf{q}=\left(\frac{\sqrt{2}}{2}, 0,0, \frac{\sqrt{2}}{2}\right)$ |

Quaternions

- Generalized complex numbers
- $\ln 2 \mathrm{D}\left(\mathrm{i}^{2}=-1\right)$
- A complex number $a+b \mathbf{i}$ that's normalized: $\sqrt{a^{2}+b^{2}}=1$
- Represents rotation of angle α, where $\mathrm{a}=\cos \alpha, b=\sin \alpha$
- A quaternion is basically that, but in 3D
- Written as $w+x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$ or (w, x, y, z)
- That's normalized: $\sqrt{w^{2}+x^{2}+y^{2}+z^{2}}=1$

$$
\mathbf{i}^{2}=\mathbf{j}^{2}=\mathbf{k}^{2}=\mathbf{i} \mathbf{j} \mathbf{k}=-1
$$

- Represents rotation of angle β around axis $\left(a_{x}, a_{y}, a_{z}\right)$
- Where $\mathrm{w}=\cos \beta ; x=a_{x} \sin \beta ; y=a_{y} \sin \beta ; z=a_{z} \sin \beta$

Quaternions

- Can easily transform into a matrix
$\mathbf{M}_{\mathbf{q}}=\left(\begin{array}{ccc}1-2 y^{2}-2 z^{2} & 2 x y-2 w z & 2 x z+2 w y \\ 2 x y+2 w z & 1-2 x^{2}-2 z^{2} & 2 y z-2 w x \\ 2 x z-2 w y & 2 y z+2 w x & 1-2 x^{2}-2 y^{2}\end{array}\right)$
- Easy math for rotating vectors without using matrix form: $\mathbf{p}^{\prime}=\mathbf{q} \mathbf{p} \mathbf{q}^{\mathbf{- 1}}$
- Easy uniform interpolation with slerp
- Unity uses it for all rotations
- For transforms, animation, interpolation...

$\operatorname{slerp}(\mathbf{p}, \mathbf{q}: t)=\frac{\sin ((1-t) \alpha)}{\sin \alpha} \mathbf{p}+\frac{\sin (t \alpha)}{\sin \alpha} \mathbf{q}$
- Provides easy conversions into it

```
var q1 = Quaternion.AngleAxis(45, new Vector3(0, 1, 0));
cos}\alpha=\mathbf{p}\bullet\mathbf{q
var q2 = Quaternion.Euler(45, 30, 85);
var q3 = Quaternion.Slerp(q1, q2, 0.3f);
var q4 = Quaternion.FromToRotation(Vector3.forward, Vector3.right);
Vector3 newPosition = q4 * transform.position;
```


Quaternions

- Good to know how they work
- You will never have to do Quaternion math directly
- Can use other formats, engines have support for it
- Always converted to a 4×4 matrix before being used on the GPU

Why 4x4 matrix?

- We want to transform points as well as vectors
- Using a single transform
- We can differentiate between points and vectors:
- Point: $P=\left(P_{x}, P_{y}, P_{z}, 1\right)^{T}$
- Vector: $\mathbf{v}=\left(v_{x}, v_{y}, v_{z}, 0\right)^{T}$
- And if we combine 3×3 rotation matrix with 3×3 scale matrix and translation vector:

$$
\mathbf{M}=\left[\begin{array}{cc}
\boldsymbol{S} \cdot \boldsymbol{R} & \mathbf{t} \\
\mathbf{0}^{T} & 1
\end{array}\right]
$$

- Then all the math works flawlessly!

4x4 matrix allows other transforms

- You can even use non-affine transformations with 4×4 matrices
- And using these, you even can transform points to vectors
$\cdot \mathbf{v}=(a, b, c, 0), \mathbf{T v}=P, P=(d, e, f, 1)(\mathbf{T}-$ non-affine transform $)$
- This is then called homogenous coordinates
- For these transformations, you can have a result of (d, e, f, g), where $g \neq$ $\{0,1\}$. In those cases, the resulting point is:

$$
\left(\frac{d}{g}, \frac{e}{g}, \frac{f}{g}, 1\right)
$$

- This is used for e.g. perspective camera

3D Transformation Pipeline

- We want to solve 3 problems
- Construct hierarchies of objects
- Transformation of object combined with its parents
- Manipulate camera
- Viewing transformation
- Render object to screen
- Projection/screen transformation
- We have objects as 3D meshes (list of vertex positions in some space)
- How do they become pixels?

Scene Graph

- Basic structure for hierarchical scenes
- Used almost anywhere, even for e.g. video editing
- It is a tree structure - directed acyclic graph
- Nodes can have any number of children

Scene Graph

Object transformation

- Each scene graph node has an affine transformation
- Affine transform is a combination of Translation, Scale \& Rotation
- Affine transform always outputs a 4×4 matrix
- Transform component in Unity
- Final object transformation
- Its own transform
- Multiplied by the parent's transformation
- Multiplied by the grandparent's transformation
- The result is a multiplication of several 4×4 matrices
\Rightarrow one 4×4 transformation matrix

Different spaces and transforms

- We determine object positions in the "world" ($\mathbf{T}_{\text {Model }}$)
- Created from a hierarchy of transformations - from object through its parents
- By placing the camera in the world, we determine from where (position, direction) we are looking at the world ($\mathbf{T}_{\text {View }}$)
- The type of camera (orthographic/perspective) determines our projection 3D $\Rightarrow 2 \mathrm{D}\left(\mathbf{T}_{\text {Projection }}\right)$
- We select the part of the window we render to ($\mathbf{T}_{\text {Viewport }}$)

Object space $\xrightarrow{\mathrm{T}_{\text {Model }}}$ World space $\xrightarrow{\mathrm{T}_{\text {View }}}$ Eye space $\xrightarrow{\mathrm{T}_{\text {Projection }}}$ NDC space $\xrightarrow{\mathrm{T}_{\text {Viewport }}}$ Screen space

Spaces in Unity

- Object \Rightarrow World - taken from object transform (transform.localToWorldMatrix)
- World \Rightarrow Eye - taken from camera transform (camera.transform.localToWorldMatrix)
- Eye \Rightarrow NDC - taken from camera parameters

Perspective

- NDC \Rightarrow Screen - taken from camera viewport ∇

Projection	Perspective
FOV Axis	Vertical
Field of View	
Physical Camera	Near 0.3
Clipping Planes	Far 1000

Object space $\xrightarrow{\mathrm{T}_{\text {Model }}}$ World space $\xrightarrow{\mathrm{T}_{\text {View }}}$ Eye space $\xrightarrow{\mathrm{T}_{\text {Projection }}}$ NDC space $\xrightarrow{\mathrm{T}_{\text {Viewport }}}$ Screen space

Real-time Rendering Pipeline

- The GPU renders 3D scenes from triangles

Offline rendering is very different (ray tracing instead of rasterization)

References

- Mathematics for 3D Game Programming and Computer Graphics
- Essential Mathematics for Games and Interactive Applications: A Programmer's Guide
- http://www.essentialmath.com/tutorial.htm

