08 Math for 3D games

Tvorba a dizajn pocitacovych hier
Navrh a vyvoj pocitacovych hier
Michal Ferko
9.11. 2023

What we need the math for

 Placing/moving/rotating/scaling objects
* Creating hierarchies of objects

« Animation
 Rendering

* Physics & simulation

* Not just 3D, also 2D (but it's simpler)

Floating point numbers

* [IEEE 754 standard
« Single (32-bit) and double precision (64-bit)

» GPUs almost exclusively single precision
« Most engines perform all operations as 32-bit floats

* GPU FLOPS
» Half precision sometimes used on GPUs to speed up execution

Vectors and points

 All math we need for 3D games revolves around vectors and points
* We use them to represent 3D locations and directions
 Transforming, animating, rendering, physics...

« 2D variants for 2D games, but the 3™ dimension is still often used

« Determine which objects are in front of which objects
 Simulate 3D-like behavior

Vectors and Points - Unity

* Vectors and points share classes
* Vector2, Vector3, Vector4

« Used for positions, directions, other spatial functionality

» Basic operations included
- Addition, subtraction, multiplication, magnitude, normalization
« Angle, Dot, Cross, Reflect...
» Mathf class for basic operations
« Random class for RNG

* Transform.position,Transform.lossyScale (+local variants)
* Transform.rotation is a Quaternion
* Transform.forward, Transform.up, Transform.right

Transformations

- Affine Transformations - talk by Jim Van Verth

* Orientation Representation — talk by Jim Van Verth
* Transform Translate/Rotate/Scale
* Look At

http://www.essentialmath.com/GDC2009/AffineXforms2009.ppt
http://www.essentialmath.com/GDC2009/Quaternions2009.ppt

Affine Transformations

* A mapping between affine spaces
* Preserves lines (& planes)

 Preserves parallel lines, but not angles or distances

« Can represent as

T(x) =Ax+y

Affine Space

* Collection of points and vectors

» Represented using a frame: < 0,i,j >
» The frame defines a coordinate space

*Vector: v =xi + yj x,y ER
*Poin P=xi+yj+0 x,y€ER

Aj=(1

i=(1,0)

Affine Transformations

» Maps from space to space by using frames
« Determines how axes change - A

» Determines how origin changes -y

T(x) =Ax+y

Examples

« Translation: T(x) = x + t (axes don't change)

=)

« Rotation: T(x) = Rx (origin doesn’t change)

R:[cosﬁ —sin @
sin @ cos 6

« Scale: T(x) = Sx (origin doesn’t change)

_Isx O
S_IO Sy]

Combining Transforms

T(x) =Ax+y
S(w)=Bw+1z
S(T(x)) =B(Ax+y)+z=BAx+By+z

* Order dependent!
S(T(x)) * T(S(x))

e Can also do inverse
T '(z)=A"1z— A1y

Graphics APIls use matrix form

Ay
T=|
0" 1
« Can then use simple matrix multiplication (column vectors)
T(S(x)) = T(Sx)

 Is a 4x4 matrix for 3D

« But most engines combine TRS into a single transform
« Translation vector (position in Unity)

« Scale vector (scale in Unity)
« Rotation (rotation in Unity) - Euler angles in Unity, but are quaternions under the hood

* Transform.rotation is of type Quaternion

Unity transform details

 Unity combines all into a 4x4 matrix that's sent to the GPU for rendering

* GPU takes the mesh vertex position and multiplies with the matrix
 Result is final position in world space

var t = transform;

var matrix = Matrix4x4.TRS(t.localPosition, t.localRotation, t.localScale);

var matrix2 = transform.localToWorldMatrix; // Same result if has no parent

« If the object has a parent, it's more difficult
« Have to combine all parent transforms (multiply all matrices)
» Result is a single 4x4 matrix to get world space coordinates

* transform.localToWorldMatrix

Orientation vs Rotation

* Orientation — described as relative to a reference frame
 Rotation — changes object from one orientation to another

* Orientation can be represented as a rotation
* From the reference frame < 0,1,j >

 Representing rotation is tricky in 3D — we need to do
« Concatenation — add two rotations together to get the resulting rotation
* Interpolation — animate between two orientations
* Rotation itself — applying rotation transform to vertex positions

Orientation Representation

u e S wm

3x3 matrix Easy, multiply Hard Easy, multiply 041 -0.67 0.61
matrices vector by matrix 086 0.08 —0.5
0.29 0.74 0.61
Euler angles Hard, can lead to Hard, cannot be Easy, convertto Yes (45°,30° 85°)
gimbal lock direct matrix
Axis+Angle Hard Easy Easy, convertto Yes v = (1,0,0)
matrix o = 45°
Quaternions Easy Easy, spherical Easy, convertto No V2 2
linear matrix Q=\-" 0, 0,7
interpolation Forv = (0,0,1), a = 45°

(slerp)

Quaternions

» Generalized complex humbers

In 2D (i* = —1)
« A complex number a + bi that's normalized: va? + b? =1
« Represents rotation of angle o, wherea = cosa, b = sina

A quaternion is basically that, but in 3D
* Writtenas w + xi + yj + zk or (w, x,y,)

- That's normalized: w2 + x2 + y2 + z2 = 1 iZ =j%>=Kk?=ijk=-1
* Represents rotation of angle g around axis (ay, a,, a,)

* Wherew = cos f;x = a,sinff; y =aysinfi; z=a,sinf

Quaternions

q

* Can easily transform into a matrix /

(1-2y2=22 2xp—2wz 2xz+2wp
2xy+2wz 1-2x7-2z7 2yz—2wx

. 2xz—2wy 2vz+2wx 1—2x2—2y2/

» Easy math for rotating vectors without using matrix form: p' = qp q !

 Easy uniform interpolation with slerp
 Unity uses it for all rotations \>

ﬁnql—ﬂa)p+shmuoq

- For transforms, animation, interpolation... slerp(p,q:7) = — :
_ _ ot sin a sin a
« Provides easy conversions into it
var ql = Quaternion.AngleAxis(45, new Vector3(e, 1, 0)); cosa=p°eq

var 2 = Quaternion.Euler(45, 30, 85);
var g3 = Quaternion.Slerp(ql, g2, 0.3f);

var g4 = Quaternion.FromToRotation(Vector3.forward, Vector3.right);

Vector3 newPosition = g4 * transform.position;

Quaternions

* Good to know how they work

* You will never have to do Quaternion math directly
« Can use other formats, engines have support for it

 Always converted to a 4x4 matrix before being used on the GPU

Why 4x4 matrix?

« We want to transform points as well as vectors
 Using a single transform
« We can differentiate between points and vectors:
- Point: P = (P, P,, P, 1)
* Vector: v = (vx, Uy, Uy, O)T

« And if we combine 3x3 rotation matrix with 3x3 scale matrix and translation

vector:
[S-R t
M‘[oT 1]

« Then all the math works flawlessly!

4x4 matrix allows other transforms

* You can even use non-affine transformations with 4x4 matrices

* And using these, you even can transform points to vectors
*v=1(a,b,c0),Tv=P,P=(d,e,f,1) (T — non-affine transform)

* This is then called homogenous coordinates

* For these transformations, you can have aresult of (d, e, f, g), where g +
{0,1}. In those cases, the resulting point is:

<d e f 1)
999

* This is used for e.g. perspective camera

3D Transformation Pipeline

* We want to solve 3 problems
 Construct hierarchies of objects
« Transformation of object combined with its parents

« Manipulate camera

* Viewing transformation

« Render object to screen

* Projection/screen transformation

« We have objects as 3D meshes (list of vertex positions in some space)
« How do they become pixels?

Scene Graph

e Basic structure for hierarchical scenes
« Used almost anywhere, even for e.g. video editing

* It is a tree structure — directed acyclic graph
* Nodes can have any number of children

Scene Graph

Back
wheels
Right Right Left Right
Wheel Wheel Door Door

Object transformation

« Each scene graph node has an affine transformation
« Affine transform is a combination of Translation, Scale & Rotation
« Affine transform always outputs a 4x4 matrix
 Transform component in Unity

* Final object transformation
* |ts own transform

« Multiplied by the parent’s transformation

« Multiplied by the grandparent’s transformation

« The result is a multiplication of several 4x4 matrices

= onhe 4x4 transformation matrix

Different spaces and transforms

« We determine object positions in the “world” (Typ4e1)
 Created from a hierarchy of transformations — from object through its parents

* By placing the camera in the world, we determine from where (position, direction) we are looking at the world
(TView)
« The type of camera (orthographic/perspective) determines our projection 3D = 2D (Tpygjection)

* We select the part of the window we render to (Ty;cwport)

Trio. Ty, Projects riewpor
. Mod View rojection Viewport
Object space —2% World space —¥» Eyespace ———» NDC space ———3> Screen space
y
VA
y X
< »> "
X 2 X

=

Spaces in Unity

* Object = World - taken from object transform (transform.localToWorldMatrix)
« World = Eye - taken from camera transform (camera.transform.localToWorldMatrix)
Vertical

« Eye = NDC - taken from camera parameters \> rojection Perspective

« NDC = Screen - taken from camera viewport —7

Clipping Planes Near 0.3
Far 1000

T T. Broiect; o
. Mod View rojection Viewport
Object space ——%5 World space —“» Eyespace ———> NDC space ———> Screen space
y
VA
Yy X -
VA
,f_' >
X é ° >
z X

Real-time Rendering Pipeline

* The GPU renders 3D scenes from triangles

Offline rendering is very different (ray tracing instead of rasterization)

Vertex Data Vertex Shader Primitive Assembly Rasterization
®
’ ¢ o I' Ul R‘“\HT T
X ® > - { \\\ \
, /e Al ANy A /
o © y " y = y
X X X l
| [
A A A—
y y y
X X X
Framebuffer Depth Test Fragment Shader

References

« Mathematics for 3D Game Programming and Computer Graphics

 Essential Mathematics for Games and Interactive Applications: A
Programmer’s Guide

* http://www.essentialmath.com/tutorial.htm

http://www.essentialmath.com/tutorial.htm

	Slide 1: 08 Math for 3D games
	Slide 2: What we need the math for
	Slide 3: Floating point numbers
	Slide 4: Vectors and points
	Slide 5: Vectors and Points - Unity
	Slide 6: Transformations
	Slide 7: Affine Transformations
	Slide 8: Affine Space
	Slide 9: Affine Transformations
	Slide 10: Examples
	Slide 11: Combining Transforms
	Slide 12: Graphics APIs use matrix form
	Slide 13: Unity transform details
	Slide 14: Orientation vs Rotation
	Slide 15: Orientation Representation
	Slide 16: Quaternions
	Slide 17: Quaternions
	Slide 18: Quaternions
	Slide 19: Why 4x4 matrix?
	Slide 20: 4x4 matrix allows other transforms
	Slide 21: 3D Transformation Pipeline
	Slide 22: Scene Graph
	Slide 23: Scene Graph
	Slide 24: Object transformation
	Slide 25: Different spaces and transforms
	Slide 26: Spaces in Unity
	Slide 27: Real-time Rendering Pipeline
	Slide 28: References

