
09 AI in Games
Tvorba a dizajn počítačových hier

Návrh a vývoj počítačových hier

Motivation

• We require opponents/teammates in games

• Non-playing characters are usually required to perform some tasks that require AI

• Following the player, combat, strategic thinking…

• We require something that responds to user actions and imitates the behavior of human

players

• Ideally, an AI should fool the players into thinking it is an actual human

• To keep the immersion level high

• Turing test

2

A little history

• Pac-man (1979) was one of the first games with character AI

• Very simple AI that decides at crossroads whether to follow the
player, run from him, or take a random road

• Used different states – scatter, chase…

• Each ghost has its personality – this determined behavior

• New target tiles are determined based on personality at every
crossroad

• It was still effective

• Randomness added a necessary factor – unpredictable behavior

• A completely predictable AI is usually easy to beat

• After a few tries, the player has a detailed model of AI behavior

3

The Kind of AI in games

• Hacks

• Games use a lot of hacks, not only in AI

• Ad hoc solutions to specific problems

• Heuristics

• Predictions that work most of the time (without guarantees)

• Algorithms - the “true” AI

• Techniques that simulate behavior and are usually derived from how real people or animals

make decisions and perform actions

• Machine Learning

• Observe thousands of examples of player behavior

• Derives its own algorithm on what to do

4

Hacks - “Game AI is not AI”

• Is the Pac-man example AI?

• It’s just generating random numbers and performing one of three actions based on the result

• It’s not an AI technique

• In Sims, a lot of actions are just pre-defined animation sequences

• There is no actual AI going on

• More complex AI ≠ better AI

5

Heuristics

• Approximate solutions to existing problems

• This is usually how the human mind solves problems

• I lost my keys ⇒ remember when I last had them and go step by step

• A simple heuristic just says how good an enemy’s aim is

• The lower the number, the smaller the chance they will hit you

• Common heuristics:

• Most constrained

• If we have two groups fighting, and one character in one group has a unique weapon that pierces through some unique

armor, it should attack a character wearing that armor

• Most difficult first – if you can buy a strong unit, do it instead of getting a few weak ones

• Most promising first – perform the action that will improve your chances the most

• E.g. Chess AI

6

Algorithms

• Some AI actions still require something more

• Movement of characters

• Decision making

• Tactics or strategy

• Analysis of game state and future game state

• “Academic” AI

7

Academic AI vs. Game AI

• Academic AI

• Make the AI as smart as possible

• Solve the problem as efficiently and precisely as possible

• E.g. we need a 99.99% guarantee that a traffic camera identifies the license plate correctly

• Game AI

• Make the player have fun

• Provide interesting challenges for the player

• React to the player

• Be predictable enough for the player

• Be believable enough to keep the illusion of a real being in control

8

Game State Analysis

• Process input data to simplify the decision process

• This is usually called sensing - you create senses for the AI

• Vision

• Hearing

• Touch

• Smell?

• …

9

Gameplay AI is a 3-step process

1. Sense – what can I see/hear/feel

• Some senses can cheat!

2. Think – consider what I do based on what I am sensing

• Process data from senses and decide what to do

3. Act - Perform actions I have decided to do

• Walk to a destination

• Attack someone

• Use an item

• …

10

AI Difficulty

• For some games, creating skilled AI is simple

• Counter-strike: aim & shoot to kill instantly

• Difficult ≠ Fun

• “Dumb down the AI” – sometimes misses, isn’t perfectly efficient

• Rubber-banding – adjusting to the player to always offer a reasonable challenge

• Trying waiting for 30 seconds in a racing game

• For more complex games, creating challenging AI is a complex task

• StarCraft 2 – there are hundreds of options of what to do at any moment

• Most difficult AI bots cheat, since the AI cannot compete with more skilled players

• Sense & Act is easy, Think is the difficult part

• Chess has a much smaller possibility space - ble to simulate 15-20 into the future

11

An example: Sims

• When does a sim become hungry?

• What to do next, and what if the sim really has to go to the bathroom?

• These are several competing systems that are assigned weights

• Changing these weights alters the behavior of the sim

• Final decisions as to which action to perform are strongly affected by the weights of

different systems

• When a sim is about to pass out of hunger, getting food becomes top priority

• AI navigation will help move them to the nearest food source

• The weight of the hunger system represents the desire to get food

12

AI types in games

• Hard-coded

• Deterministic behavior – such as turning on lights in exact hours every day in a house when you
are on vacation (to scare away thieves)

• Randomization

• Throwing in randomized behavior

• Not always exact times to turn the lights on/off

• Add a random time offset every day, say in range +-60min (we could use normal distribution)

• Weighted randoms

• Every possible next step is given a weight

• When deciding what to do, we generate a random number in range [0, W], where W is the sum of
all weights for all possibilities

• Some of the possibilities will happen more often than others

13

Weighted randoms example

• We have a creature that can perform 3 actions

• Attack, Cast spell, Run away

• We assign weights to these actions, say 60%, 30%, 10%

• Very similar to the Sims example, but those weights change over time

X = RandomFromRange(0, 99);

if (X < 60)

Attack();

else if (X < 90)

CastSpell();

else RunAway();

14

Finite State Machines (FSM)

• Very simple construct

• We have several states an entity can be in (sleeping, wary, attacking, running away…)

• We define rules to transition from one state to another

• There does not have to be a transition from each state into every other state

• The transition running away ⇒ sleeping does not make sense

• Running away ⇒ wary ⇒ sleeping makes much more sense

• We also define when these transitions from one state to another should happen

15

Finite State Machines (2)

• Based on the current state of the entity, we perform a selected action

• If the guard is in the patrol state, they might walk through corridors along a pre-defined

path

• If they are attacking, they might be moving continuously towards the player while shooting

from a gun

• Once their health becomes low, they decide to run

• A proximity mine can use the same “proximity” check as the guard

16

Finite State Machines (3)

• The decision making is encapsulated in the transition rules

• The transition rules can incorporate a certain degree of randomization

• Such as an enemy running away at less than 15-25% health

• This is called reactive AI, it always reacts to some game event

• The other type is active AI, which constantly seeks the best possible option

• A sim in Sims

• An AI opponent in Starcraft 2

17

Decision trees

• Decision trees are a simple way of representing decision making

• The inner nodes of a decision tree are decisions with only two possible answers: Yes or

No

• Each leaf node is an action node

• Each node has two children

• one for the Yes answer, one for the No answer

• We traverse the tree from the node

• Evaluate each condition

• Until we reach an action

• Then perform the action

18

Decision trees (2)

• We apply an action every time a decision needs to be made

• Decision trees can be shared, as can be individual nodes

• Decision trees are sometimes built-in visual tools

• The programmer has written code for decision nodes and action nodes

• The designer connects these to build an actual tree

• With each decision we ignore a whole sub-tree

• This is relatively efficient even for hundreds of nodes

• The decision can actually take several frames to decide

• We always save the node in which we pause the decision making

• And then resume in the next frame

• A bit risky since the situation can change abruptly, making the decision invalid

19

Decision trees (3)

• You can also have non-binary decision trees

• Such as a ProcessHealthNode that has 4 children based on how much health the

character has

• High health ⇒ attack

• Medium health ⇒ cast protective spell

• Low health ⇒ cast healing spell

• Very low health ⇒ run away

20

Behavior Trees

• Widely used in games

• It’s a tree composed of nodes

• Each node can return a status to its parent
• Success – the operation of this node finished successfully

• Failure – the operation failed

• Running – the operation is still running

• Nodes can have parameters

• Nodes can respond to context

• Game state

• Lots of Unity plugins for BT

• Built-in support in Unreal

21

Behavior Trees (2)

• Leaf nodes represent actions

• State: Running, Success or Failure

• E.g. Open a door, Run towards the player

• Composite nodes

• Encapsulate multiple children

• Execute children in some order

• Returns what is returned from children

• E.g. Sequence, Selector

• Decorator nodes

• Have a single child node

• Transform result from the child, repeat, terminate

• E.g. Inverter, Repeater

22

Behavior Trees – Actions

• Action Walk

• Parameters

• Character

• Destination – location or another character

• Running On the way

• Success Reached destination

• Failure Failed to reach destination (blocked/died/stunned…)

• Init – called the first time the node is visited

• Process/Update – called every tick while the node is “running”

23

Halo 2

24

Fuzzy logic

• Decision trees work quite well, however it’s still not realistic enough

• Using absolute threshold values to decide

• There should be a range of values that allow for both decisions to happen

• Proximity test

• 5 meters is still too far sometimes

• 7 meters is close enough sometimes

• The basic idea of fuzzy logic is that objects belong to multiple fuzzy sets by different

amounts

• A player partially behind cover can be in sets “in cover” as well as “exposed”, however we assign

percentages for each set ⇒ 60% in cover, 40% exposed

25

Fuzzy logic (2)

• The process of assigning the degrees of membership is called fuzzification

• In order to decide, we might have to defuzzify the membership degrees and give an exact

result to which set we fully belong

• Simple fuzzification:

• Cutoff values for fully belonging to a set

• Proximity ⇒ 2 sets “near” and “far”

• 4 meters = near, 7 meters = far

• between 4 and 7 meters

• weighted randomness decides

26

Fuzzy logic (3)

• Defuzzification is much harder

• From several degrees, we must choose the correct one

• Just generating a random number and considering which set is more likely to occur can

work is some situations

• We cannot just take the set with the highest degree

• fuzziness provides a chance for something unlikely to happen

• If the result is just a number, it is much easier to defuzzify

• An AI might be cautious, when combined with the fact that the player is behind cover, we

generate a number that says how long the AI will take to aim

• For boolean values, we determine a cutoff and then compare it to the degree

27

Fuzzy logic (4)

• The real power comes from rapid AI prototyping

• If (distance < 20 AND health > 1) then Attack()

• If (player is close AND I am healthy) then Attack()

• We are using two fuzzy sets in the example

• We need to redefine the AND, OR and NOT operators for fuzzy sets

• It’s no longer Boolean logic

AND → 𝑃 = min 𝐴, 𝐵

OR → 𝑃 = max(𝐴, 𝐵)

𝐴, 𝐵 − degrees of membership

𝑃 − final probability

28

Utility theory

• “Utility theory says that every state has a degree of usefulness, or utility, to an agent and that

the agent will prefer states with higher utility.”

• We take the current world state, think of what would happen if we performed some action

• What changes in the world state can be used to derive how much that agent improved its

“happiness”

• Actions with the highest utility value are chosen and performed

29

Utility theory – examples

• Chess is perfect for executing Utility theory

• If one action causes me to lose an important piece in the next move ⇒

most likely low utility value

• There are exceptions of course

• Predict all possible outcomes in the next few steps

• Choose the step maximizing the utility value

• A strategy game considers multiple things

• Troop strength

• Base/worker safety

• Estimated enemy strength

• Research level, amount of resources

30

Utility theory in practice

• We make a copy of the game state, perform the action, evaluate what happened

• Some actions take time to complete, the utility value is then utility-over-time instead (e.g.

DPS)

• We usually can make localized decisions, meaning we do not always need the whole

game state

• In Sims, a sim usually cares only about himself

• If the sim is hungry, eating will improve his happiness the most

• So he goes to the kitchen

• Might require player prediction

• In FPS games, the agents have simple utility preferences

• Agents will be preferring states where they continue to live

• And prefer when the player will have low health as a result of their actions
31

Goal-oriented action planning (GOAP)

• Utility theory decides what an agent wants to do, not HOW to do it

• GOAP is working with goals, which are desirable world states that the agent wants to achieve
through performing actions

• A goal could be to kill the player
• Attacking the player is one action that could result in just that

• An agent has multiple goals, but usually only one active at a time

• Two-stage process:
• Select the most relevant goal

• Solve a goal by executing a sequence of actions

• Goal selection can be solved using previous methods

• Decision trees, utility theory, …

• The second stage needs a special solution

32

https://www.gamedeveloper.com/programming/postmortem-AI-action-planning-
on-Assassins-Creed-Odyssey-and-Immortals-Fenyx-Rising-

https://www.gamedeveloper.com/programming/postmortem-AI-action-planning-on-Assassins-Creed-Odyssey-and-Immortals-Fenyx-Rising-
https://www.gamedeveloper.com/programming/postmortem-AI-action-planning-on-Assassins-Creed-Odyssey-and-Immortals-Fenyx-Rising-

GOAP (2)

• Say a character is hungry

• You have no food, so you need to create a plan to obtain food

• Could be going into the woods to hunt animals, then extract the meat, cook it, and finally eat it

• Each action has a set of conditions it can satisfy, as well as a set of prerequisites that
need to be satisfied

• Eating food requires cooking food

• Cooking food requires having raw food

• Having raw food requires buying raw food

• Buying food requires money

• Money requires a job

• The algorithm walks back through these preconditions and identifies which actions need
to be executed

33

GOAP (3)

• A sequence of goals might not exist

• There are lots of problems with world representation

• Not only for GOAP

• I desire a world state in which I am not hungry

• I desire a world state in which the player is dead

• We need to generate this world state with preconditions and effects

• Searching through possible actions is also a problem

• Search for a shortest (or least difficult) path in a graph of actions

• There are many ways to solve a goal

• We always walk back from the desired state to the current state, trying to find a way that could
work

• Quite advanced, but allows for very “intelligent” AI

34

Path-finding

• Not really an AI technique, more of a support technique for

other AI

• Simply searching for the shortest path from A to B in a level

• We have nodes and edges

• Nodes describe points that the agent must be able to reach

• Nodes are connected by edges, which are just straight lines

• An agent moves along an edge to get to another node

• To get to a neighboring node, you just rotate the agent and

move them along the corresponding edge

35

Image from https://en.wikipedia.org/wiki/Pathfinding

https://en.wikipedia.org/wiki/Pathfinding

Path-finding (2)

• Moving along straight lines is highly unnatural

• Except for robots maybe

• Nodes may be in a grid, resulting in not very smooth motion

• A few possibilities to avoid this:

• Irregularly placed nodes

• Allow each node to have a tolerance as to how close the agent must be to consider that they

visited the node

• Placing an interpolation curve (e.g. piecewise bezier curve) through the nodes

36

Path-finding (3)

• Edges may be unidirectional, bidirectional, even weighted

• Higher weight means a harder to pass route

• Weights could even be different for different types of agents

• Flying units versus ground units, or units that can walk up cliffs

• Results in different paths taken by different agents

• Weights can be dynamic

• Building something on top of existing nodes sets the weight to infinity

• Flying units might try to avoid guard towers, so the guard towers increase the weight of nearby

edges

37

A* path-finding (aka. A-star)

• There are lots of algorithms that solve the path-finding problem

• A* is the most used one

• Relatively fast to compute

• Has lots of modifications

https://en.wikipedia.org/wiki/A*_search_algorithm

38

https://en.wikipedia.org/wiki/A*_search_algorithm

Path-finding – taking it a step further

• Another common technique is called a navigation

mesh (navmesh)

• It is a simple mesh that describes all walkable terrain

in the level

• Can be artist generated

• Much better is when it’s generated automatically

• Might require some tweaking by artists or designers

• Triangles are nodes, edges are between neighboring

triangles

• A* can be used, we just have to set the tolerance

values based on the triangles

39

AI in Unity

• Very little AI support without plugins

• Can use Unity’s Animator for Finite State Machines

• Can use Visual Scripting for Finite State Machines

• Has ML Agents package for reinforced learning

• Making your own is not that hard for simple games

• Lots of paid and a few free plugins

• Behavior Designer, NodeCanvas, Apex Utility AI, Panda BT

• Simply coding it (no visual representation) is also OK

• But think about configurability & the potential to modify it

40

AI in Unity

• Unity has built-in support for NavMesh Path-finding

• Static NavMeshes

• Dynamic obstacles and priorities

• Rebuild NavMesh dynamically

• Only for 3D

• For 2D

• Use NavMeshPlus – https://github.com/h8man/NavMeshPlus

• Built on top of Unity’s 3D NavMesh

• Use A* Pathfinding Project - has a free/paid version – https://arongranberg.com/astar/

41

https://github.com/h8man/NavMeshPlus
https://arongranberg.com/astar/

References

• McShaffry, M., and Graham, D. Game Coding Complete, Fourth Edition. Course Technology

PTR, 2012.

• Millington, Ian, and John D. Funge. Artificial intelligence for games. Burlington, MA: Morgan

Kaufmann/Elsevier, 2009. Print.

• https://www.gamedeveloper.com/programming/behavior-trees-for-ai-how-they-work

• https://www.gamedeveloper.com/programming/postmortem-AI-action-planning-on-

Assassins-Creed-Odyssey-and-Immortals-Fenyx-Rising-

42

https://www.gamedeveloper.com/programming/behavior-trees-for-ai-how-they-work
https://www.gamedeveloper.com/programming/postmortem-AI-action-planning-on-Assassins-Creed-Odyssey-and-Immortals-Fenyx-Rising-
https://www.gamedeveloper.com/programming/postmortem-AI-action-planning-on-Assassins-Creed-Odyssey-and-Immortals-Fenyx-Rising-

	Slide 1: 09 AI in Games
	Slide 2: Motivation
	Slide 3: A little history
	Slide 4: The Kind of AI in games
	Slide 5: Hacks - “Game AI is not AI”
	Slide 6: Heuristics
	Slide 7: Algorithms
	Slide 8: Academic AI vs. Game AI
	Slide 9: Game State Analysis
	Slide 10: Gameplay AI is a 3-step process
	Slide 11: AI Difficulty
	Slide 12: An example: Sims
	Slide 13: AI types in games
	Slide 14: Weighted randoms example
	Slide 15: Finite State Machines (FSM)
	Slide 16: Finite State Machines (2)
	Slide 17: Finite State Machines (3)
	Slide 18: Decision trees
	Slide 19: Decision trees (2)
	Slide 20: Decision trees (3)
	Slide 21: Behavior Trees
	Slide 22: Behavior Trees (2)
	Slide 23: Behavior Trees – Actions
	Slide 24: Halo 2
	Slide 25: Fuzzy logic
	Slide 26: Fuzzy logic (2)
	Slide 27: Fuzzy logic (3)
	Slide 28: Fuzzy logic (4)
	Slide 29: Utility theory
	Slide 30: Utility theory – examples
	Slide 31: Utility theory in practice
	Slide 32: Goal-oriented action planning (GOAP)
	Slide 33: GOAP (2)
	Slide 34: GOAP (3)
	Slide 35: Path-finding
	Slide 36: Path-finding (2)
	Slide 37: Path-finding (3)
	Slide 38: A* path-finding (aka. A-star)
	Slide 39: Path-finding – taking it a step further
	Slide 40: AI in Unity
	Slide 41: AI in Unity
	Slide 42: References

