
10 Networking in Games
Tvorba a dizajn počítačových hier

Návrh a vývoj počítačových hier

Motivation

• Online statistics & analytics

• Online storage of user state

• Online software and content updates

• Communication with 3rd parties

• Multiplayer

• We will focus on the hardest of these, multiplayer

Types of Multiplayer

• Asynchronous (Clash of Clans)

• Turn-based games (Chess, Hearthstone)

• Simple real-time games (Clash Royale)

• Fast action games (CS:GO, Fortnite, Overwatch…)

• MMO games (World of Warcraft…)

Multiplayer – Basic idea

• Player input modifies game state

• Game state is synchronized across the network

• Each player modifies only a subset of the game state

• What would happen if multiple players controlled the same objects?

• The usual approach uses client-server communication

• The whole level has one server – could be one of the players or a dedicated server

• Other players are connected to the server

Client-Server model

• Connection-based approach

• Server – provides a service (game state)

• Client – requests the service from a server (access/modify game state)

• Multiple clients communicate with one server, never between each other

• Centralized system, high demands on server resources

• Especially for MMO games such as World of Warcraft

• Low player numbers can be handled by a normal PC and internet

connection

• Counter-strike, Starcraft, …

Relation to the Observer pattern

• Game state on the server (subject) is being observed by clients (observers)

• Clients get notified on state changes

• Clients send their data to modify the state

• But the server decides what to modify (to avoid cheating)

• Both parties receive data with a delay

Networked Game through Views

• We implement two additional classes to enable networking

• Remote game view

• Remote game logic

• Proxy design pattern

7

Remote Game View

• On the server, a remote player is just like an AI agent

• What happens inside the game view is totally different

• Game events are packed up and sent via TCP or UDP to a client

• Need to compress data, select only important game events

• No need to send “object moved” if several such events occurred since the last packet
was sent, we send only the most recent

• Receives game commands from the client

• Should not trust these entirely

• Need sanity checks to prevent hacking

• After filtering impossible commands, they are passed on to the game logic

8

Remote Game Logic

• The game logic is an authoritative server, it represents the real game state

• Clients need a copy of the game state to be able to present the player the game

correctly

• They also need to account for network delays and network errors

• This is the job of Remote Game Logic

• It is similar to server game logic

• There is a need to simulate without receiving events from the server

• Saves bandwidth

• Increases responsiveness

• Allow for “against the rules” corrections when the server sends the correct

data
9

Typical Client-Server interaction

• Client sends a request to create a new connection for it on the server

• Server receives the request and prepares a connection, then notifies the client

• The client sends data through the connection (over and over)

• Whenever the server receives data from a client, it is notified and responds based

on the data

• The client is finished (player turned off the game) and notifies the server to abort

the connection

• If any of the sides does not respond within a reasonable time frame, a time-out
occurs, and the connection is lost

• Handle the disconnect automatically

Peer-to-peer networking

• Alternative to client-server

• Decentralized system

• All nodes are equal, there is no server

• Distributed resources, part of resources available on each node

• Very rarely used in games

• Not reliable communication between multiple players

• More vulnerable to cheating attempts

• Depends on players’ connection quality

Multi-server network architectures

• Used for MMOs

• Multiple distributed servers that communicate between each other and

each has several clients connected

• The servers connect nearby clients, clients that are in the same location…

• Complicated load balancing

• Can sustain millions of players (World of Warcraft)

• But not all interacting at the same time

• In-game locations have their limits on the number of players

Low-level protocol

• UDP – User Datagram Protocol

• Connection-less communication

• Packets are always sent to a specific IP address and port

• Unreliable protocol

• Order of packets is not guaranteed, need to split your data into packets

• Delivery of packets is not guaranteed (1-5% loss)

• Duplicated packets can occur

• TCP/IP – Transmission Control Protocol

• Connection-based communication

• Guaranteed order and reliability

• Splits your data into packets automatically – just write/read data to/from a stream

• Flow control

• Easy-to-use, just like writing/reading data to files

Which one is used in
real-time multiplayer games?

UDP or TCP?

Problems with TCP/IP

• Input and output streams (“files”) are buffering data on both sides and
decide when to send the data

• Lots of small-sized data (such as player commands) might be buffered for seconds
before sending

• Possible fix is using TCP_NODELAY to send data immediately

• If packets are lost or come out of order, they are sent again or re-ordered

• If it happens again, it tries again

• This may cause huge latency problems (seconds)

• TCP is basically UDP with added overhead, that splits your data into
packets, numbers them, and then checks them on the other side

High latency in TCP

• If we have problems reconstructing the packets, stalls occur

• Depends on the ping between both sides

• On packet loss, stalls might reach duration of 3 × latency

• If new data was sent during that time, TCP forces it to wait for the old data

• Therefore, most real-time games use UDP
• But with added features

• TCP can used for games that do not need fast real-time communication
• Turn-based games

• Online statistics, analytics

• Saving user data

• Important communication – players buying something, …

Problems with network games

• High latency

• “Lag” – Round trip time (RTT)

• How long it takes to send a packet to the other network node and receive an answer

• Latency = 0.5 * RTT

• “Jitter” – Fluctuation of latency between packets

• Packet loss – as mentioned before

Avoiding problems

• Reducing the distance between end nodes

• 12.000km distance, light travels at 300.000km/s => 40ms latency

• This is the lowest bound, since we are limited by the speed of light

• Getting a better internet connection ☺

• Not really an option, since players want to play in their current setup

• Not much we can do to reduce these

• We can improve by:

• Sending consistently large packets to avoid jitter

• Reducing packet size – sending only essential data

• Not requiring packet ordering (UDP in favor of TCP)

• Split data based on importance and required latency (combining UDP & TCP)

Latency compensation techniques

• There is nothing we can do about latency (physics…), so let’s try to

compensate

• Prediction techniques

• Manipulation of game time to equalize gameplay

• Data compression

• We need to be careful, since we might be opening doors for cheating

• Cheat detection

Prediction

• The client predicts the server response and presents the game state as it is

• The game responds immediately to user input

• The game state might diverge from the actual (server) game state

• Higher latency ⇒ bigger differences in states

• Repairing of game state when the server message is received

• Player “prediction”

• Let the user interact, expect what will be received concerning only this player

• Opponent prediction

• Predict positions (and lots more…) of entities not controlled by the player

Player “prediction”

• We need to keep the game state reasonable while we wait for the server to
respond

• The player is allowed input, however some of their actions might be undone later,
when the client “repairs” the game state according to the server

• Introducing tears and “teleports” is a negative side-effect, however not so bad as
stalling until new information is received from the server

• Can be in the form of calculating correct physics, allowing player movement and
actions

More responsive ⇒ Less consistent

More consistent ⇒ Less responsive

Opponent prediction

• We take the opponents’ entities, their last known position and where they are
heading

• Predict position based on direction and speed

• Take it as the truth if we do not receive an update

• which will be retrospective!

• We might need synchronized Random Number Generators (RNGs)

• An opponent fires a gun, it does between 15 and 30 damage

• RNG can make the difference between a unit dying or surviving

• Pseudo-RNG are initialized with the same seed value on all clients and the server

• Usually used in RTS games (Warcraft 3 does this)

• Avoiding RNG in game design is also valid

Opponent prediction in FPS games

• Position 𝑃, Velocity 𝒗, last received packet at time 𝑡0, current time is 𝑡

• Very simple linear prediction: 𝑃 𝑡 = 𝑃 + 𝒗 ⋅ (𝑡 – 𝑡0)

• We additionally use the physics engine to avoid displaying the enemies running

through walls

• Causes an unsolvable problem

• Firing at the opponent at a predicted position

• The server receives only your position and direction when you shoot

• You clearly see that you are firing directly at them

• The server knows better, and the opponent does not die

Adjust send rate

• Do not send all data every frame

• If game is running at 200 FPS, update just a small amount of necessary data

every frame

• CS:GO – 64 updates per second (tick rate)

• CS:GO tournaments = 128 tick rate

• CS2 “sub-tick rate” still does 64 updates per second

• But evaluates actions with precise timestamps

• Different data in-game can have different send rate

• Should not depend on framerate

• All network communication usually runs on a separate thread

Images from
https://www.youtube.com/watch
?v=GqhhFl5zgA0

https://www.youtube.com/watch?v=GqhhFl5zgA0
https://www.youtube.com/watch?v=GqhhFl5zgA0

Time warping

• The client has fired a shot

• At 𝑡0 = 0

• The server received the message

• At 𝑡1 = 100ms

• The enemy moved left in the 100ms

• Red boxes – Show the position of the enemy where it was on the client in
time 𝑡0 = 0

• Blue boxes – Position estimated by the server after a time warp

• The server rolls time back

• Using the game time from the client

Opponent prediction in RTS games

• Each unit has received a command

• Clients receive only a list of commands for a list of units

• Units can keep executing their commands

• Must be deterministic

• More consistent than FPS games

• Commands for one unit do not change as often as the position or rotation of the player

• Example:

• Max actions per minute for RTS players is around 600

• 10 actions per second ⇒ 1 action/packet every ~100ms

• Compared to 128 tick servers in CS:GO ⇒ 1 packet every ~8ms

Data compression

• Lossless compression

• Opponent prediction

• Delta compression

• Send only changes of the state, not the whole state

• Interest management

• Send only info that the player can see

• (Peer-to-peer)

• Update aggregation

• Group multiple messages (can be from different moments in time) into one

• Problematic with real-time games

Cheating

• We cannot trust packets we receive from the clients

• Someone might be altering them

• Or it might not be a game client at all, but a custom-made program trying to mess up

our server

• We need some “correctness” detection on the server

• Ignore packets that update position of players too rapidly

• Ignore unnatural Interest management packets

• Most typical cheats

• Wall-hack, map-hack, speed-hack, aim-bot

Wall-hacking/map-hacking

• Wall-hacking: seeing through walls in FPS games

• Map-hacking: ignoring fog of war in RTS games

• Showing enemy units in fog of war

• The hack alters the game’s window and renders additional objects on top

of the game’s output image

• Monitors memory/packets to identify position of units

• All unit info is received over the network – man-in-the-middle attacks

• Special algorithms to find the data in memory

• Or a directly altered executable

Speed-hack

• Alters memory of the process

• Send “impossible” movement data to the server

• If the server is not validating it, it just accepts incorrect data

Aim-bot

• Read positions of enemies from process memory or network

• Directly alter rotation of player in memory

• Or generate fake mouse movement

Anti-cheating

• Network encryption

• SSL or other encryption methods

• Monitor memory reading/writing attempts

• Usually by a different anti-cheat process

• Encrypt data in memory

• Protect executable from cracking attempts

• Denuvo

• CheatEngine is a simple tool for accessing memory of other processes

• Use at your own risk, never to cheat online

• Removing challenges makes the game less fun

Networking in Unity

• Simple communication over HTTP/HTTPS

• UnityWebRequest, C# HttpClient/HttpRequest

• UDP/TCP communication

• C# TcpClient, TcpListener, UdpClient, Socket

• Unity NetCode – part of DOTS, recently came out of preview

• Unity had UNET before, but it has been deprecated for 3+ years

• Mirror – based on UNet, offers different low level transports

• free & open-source, but you need your own server

• Photon – several different solutions

Photon

• Has several solutions for networking, each with specific use-cases

• Quantum – deterministic engine, high cost

• Realtime – cross-platform, for various engines, lower-level

• PUN (Photon Unity Networking) – easy to use, similar to Unet, built on top of Realtime

• Bolt – for Unity, relatively easy to use, built on top of Realtime

• Fusion (in preview) – new, Unity-only, has various improvements over PUN and Bolt

• allows different network architectures

• Has free 20 CCU (concurrent users) for testing

Games built with Photon

• Stumble Guys

• 32 players per race

• 25M DAU

• Humankind, Robocraft, Phasmophobia, VRChat, Golf Clash, Ylands,

Outward, Prison Architect, Descenders, Among Us VR

References

• Armitage, G., Claypool, M., and Branch, P. Networking and Online Games:

Understanding and Engineering Multiplayer Internet Games. Wiley, 2006.

• McShaffry, M., and Graham, D. Game Coding Complete, Fourth Edition.

Course Technology PTR, 2012.

• Hall, R., and Novak, J. Game Development Essentials: Online Game

Development. Cengage Learning, 2008.

• Novak, J. Game Development Essentials: An Introduction. Cengage

Learning, 2011.

	Slide 1: 10 Networking in Games
	Slide 2: Motivation
	Slide 3: Types of Multiplayer
	Slide 4: Multiplayer – Basic idea
	Slide 5: Client-Server model
	Slide 6: Relation to the Observer pattern
	Slide 7: Networked Game through Views
	Slide 8: Remote Game View
	Slide 9: Remote Game Logic
	Slide 10: Typical Client-Server interaction
	Slide 11: Peer-to-peer networking
	Slide 12: Multi-server network architectures
	Slide 13: Low-level protocol
	Slide 14: Which one is used in real-time multiplayer games? UDP or TCP?
	Slide 15: Problems with TCP/IP
	Slide 16: High latency in TCP
	Slide 17: Problems with network games
	Slide 18: Avoiding problems
	Slide 19: Latency compensation techniques
	Slide 20: Prediction
	Slide 21: Player “prediction”
	Slide 22: Opponent prediction
	Slide 23: Opponent prediction in FPS games
	Slide 24: Adjust send rate
	Slide 25
	Slide 26: Time warping
	Slide 27: Opponent prediction in RTS games
	Slide 28: Data compression
	Slide 29: Cheating
	Slide 30: Wall-hacking/map-hacking
	Slide 31: Speed-hack
	Slide 32: Aim-bot
	Slide 33: Anti-cheating
	Slide 34: Networking in Unity
	Slide 35: Photon
	Slide 36
	Slide 37: Games built with Photon
	Slide 38: References

