
06 Game Physics
Tvorba a dizajn počítačových hier (FMFI)

Návrh a vývoj počítačových hier (FIIT)

Michal Ferko

24. 10. 2024



Realistic modeling of the world

• We are mimicking the real world with realistic rendering, environments and 

animations

• Pre-defined physics animations (exported from a 3D modeling software 

such as 3ds max) can add physics into our world

• Usually we need to dynamically create these animations

• We need to react to user input

• The simplest game physics model: Pong



Pong physics model

• We have a ball moving at constant speed

• We render one frame every 20ms -> 50 FPS

• Whenever the ball hits a paddle, we compute 

new velocity

• That is, direction and speed

• Paddles are moved only by user input, not 

affected by the ball

• 3D points: 𝑃, 𝑄, 𝑅 … ∈ 𝔼3

• 3D vectors: 𝒖, 𝒗,𝒘… ∈ ℝ3

Image from https://en.wikipedia.org/wiki/Pong

https://en.wikipedia.org/wiki/Pong


Pong physics model (2)

• 𝑛 = current frame, 𝑛 + 1 = next frame

• Update the position of the ball every frame: 𝑃𝑛+1 = 𝑃𝑛 + 𝒗 ∗ ∆𝑡

• Bounce off the top and bottom of the screen

• Detect if a collision occurred between frame 𝑛 and frame 𝑛 + 1

• Is the line 𝑃𝑛𝑃𝑛+1 intersecting the paddle line?

• On collision, change the ball’s velocity

• Compute the exact point at which the ball will bounce off

• Change velocity by reflecting the velocity vector

• End game if the ball intersects the left or right of the screen



Complex physics models

• To perfectly simulate the real world, we would need lots of different 

physical mechanics

• Rigid body dynamics

• Soft bodies

• Fluids

• Vehicle physics

• Ragdoll physics, Cloth simulation ⇒

• Destructible environments

• …



Complex physics models - Reality

• Most of these mechanics are very complex and have little usage in games

• Most games with physics use rigid body dynamics

• Ragdoll physics ⇒ for death animations of characters

• Soft bodies are used rarely, too complex or not well plugged into a game

• Added value for the player is usually negligible

• Cloth simulation ⇒ mostly for rendering

• Fluid dynamics is usually overkill, animating oceans or water is done using 

simpler tricks



Rigid body dynamics

• We will focus only on this part of realistic physics

• Our objects will be rigid bodies – non-deformable solid objects

• We want to compute the dynamics of rigid bodies

• The movement and rotation of rigid bodies

• Based on Newton’s laws of motion (a.k.a. dynamics)

• Objects can have constraints

• Static objects – not movable by any force

• Kinematic objects – moved by the users or animation

• Applies force to other objects, any force applied to them is ignored

• Joints, connected components (car wheel)…



Linear Dynamics

• Movement of the object through the world is a position function 𝑋 𝑡

• We do not know the values of 𝑿 𝒕 until all player input up until time 𝒕 is 

known

• Constant velocity: 𝑋(𝑡) = 𝑋0 + 𝑡 ∗ 𝒗0

• Derivative of the position function is velocity:
𝜕𝑋

𝜕𝑡
𝑋 𝑡 = 𝒗(𝑡)

• 2nd order derivative: acceleration

• When the acceleration is a zero vector, the velocity is a constant vector

• Otherwise, velocity is a function of time (const. accel.): 𝒗 𝑡 = 𝒗0 + 𝑡 ∗ 𝒂

• Or with variable acceleration: 𝒗 𝑡 = 𝒗0 + 𝑡 ∗ 𝒂(𝑡)



Example

• Parabolic path of a projectile – “ballistic shot”

• Works for all objects if we ignore air friction - rocks, cannonballs, bullets…

• We have an initial velocity 𝒗0 and initial position 𝑋0

• Acceleration is equal to gravity, which is a constant 𝒂 = 0,−9.81, 0

• 𝑋 𝑡 = 𝑋0 + 𝑡 ∗ 𝒗0 +
1

2
𝑡2 ∗ 𝒂

• 𝒗 𝑡 = 𝒗0 + 𝑡 ∗ 𝒂

• 𝒂 𝑡 = 𝒂



Forces

• We want a way to compute the acceleration

• 𝒇 = 𝑚 ∗ 𝒂

• 𝒇 – force [𝑁, 𝑘𝑔 ∗ 𝑚/𝑠2], 𝑚 – mass [𝑘𝑔], 𝒂 – acceleration [𝑚/𝑠2]

• Multiple forces affect a single object, we need to compute the position, 

velocity and acceleration in the next time step with respect to all those 

forces

• Gravity (assumes flat world most of the time), air friction, contact force



Getting the desired positions

• Forces are 3D vectors (direction + magnitude)

• Adding all forces affecting an object in frame 𝑁 gives us the combined 

force that will determine the actual movement of the object

• Computing the result

1. Apply forces to object 𝒇(𝑡) = 𝒇0(𝑡) + 𝒇1(𝑡) + ⋯+ 𝒇𝑘(𝑡)

2. Compute acceleration from forces 𝒂(𝑡) =
𝒇(𝑡)

𝑚

3. Integrate acceleration to get velocity 𝒗 𝑡 = 𝒂׬ 𝑡 𝑑𝑡

4. Integrate velocity to get position 𝑋 𝑡 = 𝒗׬ 𝑡 𝑑𝑡

5. Move object to the desired position 𝑋 𝑡



Moving with variable acceleration

• Analytic solution for computing the position and velocity is hard in general

• We work with forces, so we start from acceleration

• We will not find the exact equation for 𝒗(𝑡) and thus not for 𝑋(𝑡)

• Impluse forces are simple

• Applied only in a specific frame, don’t last “between” frames

• Problems occur with variable forces that are applied continuously

• Objects in contact, friction, springs, joints…

• Numerical integration solves these equations

• Advanced topic, not covered here

• See more in book references



Rotational dynamics

• We have not covered rotation of objects yet!

• Center of mass important for computing the center of rotation

• The process of computing rotational dynamics is similar to linear dynamics
• A little more complex, no time to go into detail

• Applying any force to an object is then split into two forces
• Translational & rotational

Position 𝑋 ⇒ orientation 𝒒 (a quaternion)

Velocity 𝒗 ⇒ angular velocity 𝜔

Force 𝒇 ⇒ torque 𝜏

Linear momentum 𝒑 ⇒ angular momentum 𝑳

Mass 𝑚 ⇒ inertia tensor 𝑱



Object-object interaction

• So far, we have talked about a single object affected by forces

• What happens when there are more objects?

• We need to detect when two objects are colliding

• This area is called collision detection

• Collision response is the next important part

• We know two objects are colliding, what now?

• Objects in contact apply forces to each other



Intersections

• Objects (rigid bodies) are just triangular meshes or simple well-defined 

shapes (spheres, capsules, boxes…)

• We might use other objects to determine intersections

• For instance rays when shooting from a gun (or picking an object in 3D)

• Other simple helper objects

• Planes, Spheres, Capsules, Axis-Aligned Boxes, Oriented Boxes…

• When working with intersections, we might want 2 types of result

• Boolean – are objects intersecting? (our current focus)

• Computed intersection (point, triangle, mesh, …)



Determining the intersection

• We have various different objects

• Rays, Triangles, Planes, Spheres, Capsules, Axis-Aligned Boxes, Oriented Boxes…

• To determine intersection between either two, a special algorithm must be 

used that is designed for the two types

• Easy and fast-to-compute intersection algorithms

• Ray-Sphere, Ray-Plane, Ray-AAB, Ray-Triangle

• Sphere-Sphere, Sphere-Plane, Sphere-Triangle

• AAB-AAB, AAB-Plane, …

• Thousands per second are OK



Complex intersections

• Convex meshes

• Intersections with convex meshes are hard in general

• Usually, we need to test every single triangle

• Non-convex meshes

• Even harder than convex meshes

• Might need to split non-convex meshes into several convex parts for 
performance reasons

• Tens to hundreds of tests can be executed per second

• Heavily depends on mesh complexity

• Mesh-Mesh intersection

• Might end up testing every triangle-triangle pair ⇒ 𝑂 𝑛2

• Two meshes with 10000+ triangles (not so much for rendering) will be 
very slow



Optimizing intersections

• Use simpler shapes

• Encapsulate complex objects with simpler ones (bounding volumes)

• No need for exact precision

• Take advantage of hierarchical space-partitioning

• Use bounding volumes



Bounding volumes

• Bound complex mesh geometry with simple objects

• Bounding Spheres

• Axis-Aligned Bounding Boxes (AABB)

• Oriented Bounding Boxes (OBB)

• Use hierarchies of bounding objects for compound objects



(Ray)casting

• Casting an object (ray, sphere…) along a line in a scene to 
determine which objects are hit and in what order

• Used to determine closest objects along a line
• Can be used to determine all objects we hit

• We can work with the contact points

• Example: shooting a gun in a FPS game
• Cast a ray from the camera in the viewing direction

• Determine what we hit first – it’s instant (usually called “hit-
scan”)

• If it’s a character ⇒ deal damage

• If it’s a wall ⇒ create a decal

• Much more robust than fast moving projectiles



Space partitioning

• If we have thousands of objects in the scene and 

need to compute object-object intersection for each

• 𝑂 𝑛2 tests

• Create a data structure that allows fast querying of 

possibly intersecting objects

• Discard distant/irrelevant objects fast

• Possibilities

• Grids (regular, irregular) – basic, but works for simple scenes

• Bounding Volume Hierarchies (BVH) – much better

• BSP or kD-trees - best

Image from https://en.wikipedia.org/wiki/K-d_tree

https://en.wikipedia.org/wiki/K-d_tree


Space partitioning (2)

• Need to consider dynamic objects

• Our space partitioning system must allow fast 

rebuilding of the hierarchy

• Or small adjustments in the tree structure on 

update

• Worst case – rebuilding the whole tree

Images from http://www.essentialmath.com/GDC2007/1_GDC2007_Eiserloh_Squirrel_PhysicsOverview.ppt

http://www.essentialmath.com/GDC2007/1_GDC2007_Eiserloh_Squirrel_PhysicsOverview.ppt


Collision response

• Once we know two objects are colliding (will be colliding in the next frame), 

we want to produce a correct response

• Need to consider physical materials

• Throwing a ball on concrete vs. throwing a ball on soil

• Friction, bounciness…

• Collision response is produced as additional forces

• A new force is produced for both objects

• For this, we need to determine the actual intersection locations



Precision problems

• To maintain performance, a lot of things are simplified or faked

• Fixed time updates should occur in infinitely short intervals

• Otherwise, a fast-moving object might pass through walls (tunneling)

• Using static intersections instead of dynamic

• Using algorithms that consider linear and angular velocity of objects might solve the 

previous problem

• Usually requires much more computation

• Viable (fast enough) for simple bounding volumes such as spheres

• Solving collision response pair-wise is simple

• If we solve the collision for A, B and decide to move B so that it collides with C

• A ⇒ B ⇒ C ⇒ A ⇒ B ⇒ C…



Tunneling

• Small & fast objects go through 

other objects

• Solutions (ideally combine all 3)

• Limit minimum object size/thickness

• Limit maximum speed

• Simulate more often

• Dynamic algorithms help

• For more details about Unity, see

• https://docs.unity3d.com/Manual/Contin

uousCollisionDetection.html

Images from http://www.essentialmath.com/GDC2007/1_GDC2007_Eiserloh_Squirrel_PhysicsOverview.ppt

https://docs.unity3d.com/Manual/ContinuousCollisionDetection.html
https://docs.unity3d.com/Manual/ContinuousCollisionDetection.html
http://www.essentialmath.com/GDC2007/1_GDC2007_Eiserloh_Squirrel_PhysicsOverview.ppt


Solutions

• Ostrich approach

• Ignore the problems and let’s hope nobody notices

• Selective approach

• Select dynamic collision algorithms for more important and fast-moving objects

• Grenades, bullets, …

• Any object it will collide with is going to have to use the dynamic intersection version

• Or at least the “half-dynamic” version (one object dynamic, the other static)

• Know physics limitations

• Thickness of colliders & maximum object speed

• Amount of objects

• Complexity of objects – colliders, rigidbodies, joints…



Unity’s physics engine

• The Transform component of a game objects contains the position X and orientation q

• We add physics through components

• Rigidbody - Provides mass for our object and allows forces to affect it
• Other settings such as drag, collision detection settings, kinematic settings…

• Colliders - Give our objects shape
• Allow us to detect collision events

• Can be triggers that do not actually collide but provide trigger events
• “regions” we can activate

• Are used to calculate the inertia tensor automatically

• Joints and cloth - Constraints and non-rigid simulation

• Character controller – unaffected by forces, responds to collisions
• Special component for controllable characters – physically unrealistic

• NVIDIA PhysX (3D), Box2D (2D), Havok (3D AAA replacement)



Unity’s physics engine scripting

• Physics computation happens after FixedUpdate

• The Rigidbody component allows for manipulation of objects with forces
• Hitting objects with colliders produces contact force

• Computes center of mass automatically

• AddForce, AddTorque, AddForceAtPosition, manually setting velocity

• Can have physical material (friction and bounciness)

• Collider components
• Can have density (for Rigidbody auto-mass computation)

• Can be triggers – objects do not collide, but trigger callbacks are executed

• Provide collision callbacks
• OnCollisionEnter, OnCollisionStay, OnCollisionExit

• OnTriggerEnter, OnTriggerStay, OnTriggerExit



Execution Order of Event functions

• What Unity events get called in what order

• Most important image for every Unity programmer!!!

https://docs.unity3d.com/Manual/ExecutionOrder.html

https://docs.unity3d.com/Manual/ExecutionOrder.html


Collisions messages called only in some 
cases
https://docs.unity3d.com/Manual/

CollidersOverview.html

https://docs.unity3d.com/Manual/CollidersOverview.html
https://docs.unity3d.com/Manual/CollidersOverview.html


Unity’s physics engine scripting (2)

• Physics class

• Global physics settings (As well as Project Settings => Physics)

• Overlap tests (e.g. Physics.OverlapSphere)

• Cast tests (e.g. Physics.Raycast)

• Closest point computation (Physics.ClosestPoint)



References

• http://www.essentialmath.com/tutorial.htm

• Mathematics for 3D Game Programming and Computer Graphics

• Essential Mathematics for Games and Interactive Applications: A 

Programmer’s Guide

http://www.essentialmath.com/tutorial.htm
https://www.amazon.com/Mathematics-Programming-Computer-Graphics-Third/dp/1435458869
https://www.amazon.com/Essential-Mathematics-Games-Interactive-Applications/dp/0123742978/
https://www.amazon.com/Essential-Mathematics-Games-Interactive-Applications/dp/0123742978/

	Slide 1: 06 Game Physics
	Slide 2: Realistic modeling of the world
	Slide 3: Pong physics model
	Slide 4: Pong physics model (2)
	Slide 5: Complex physics models
	Slide 6: Complex physics models - Reality
	Slide 7: Rigid body dynamics
	Slide 8: Linear Dynamics
	Slide 9: Example
	Slide 10: Forces
	Slide 11: Getting the desired positions
	Slide 12: Moving with variable acceleration
	Slide 13: Rotational dynamics
	Slide 14: Object-object interaction
	Slide 15: Intersections
	Slide 16: Determining the intersection
	Slide 17: Complex intersections
	Slide 18: Optimizing intersections
	Slide 19: Bounding volumes
	Slide 20: (Ray)casting
	Slide 21: Space partitioning
	Slide 22: Space partitioning (2)
	Slide 23: Collision response
	Slide 24: Precision problems
	Slide 25: Tunneling
	Slide 26: Solutions
	Slide 27: Unity’s physics engine
	Slide 28: Unity’s physics engine scripting
	Slide 29: Execution Order of Event functions
	Slide 30: Collisions messages called only in some cases
	Slide 31: Unity’s physics engine scripting (2)
	Slide 32: References

