
08 Math for 3D games
Tvorba a dizajn počítačových hier

Návrh a vývoj počítačových hier

Michal Ferko

14. 11. 2024



What we need the math for

• Placing/moving/rotating/scaling objects

• Creating hierarchies of objects

• Animation

• Rendering

• Physics & simulation

• Not just 3D, also 2D (but it’s simpler)



Floating point numbers

• IEEE 754 standard

• Single (32-bit) and double precision (64-bit)

• GPUs almost exclusively single precision

• Most engines perform all operations as 32-bit floats

• GPU FLOPS

• Half precision sometimes used on GPUs to speed up execution



Vectors and points

• All math we need for 3D games revolves around vectors and points

• We use them to represent 3D locations and directions

• Transforming, animating, rendering, physics…

• 2D variants for 2D games, but the 3rd dimension is still often used

• Determine which objects are in front of which objects

• Simulate 3D-like behavior



Vectors and Points - Unity

• Vectors and points share classes (32-bit floats)
• Vector2, Vector3, Vector4

• Used for positions, directions, other spatial functionality

• Basic operations included
• Addition, subtraction, multiplication, magnitude, normalization

• Angle, Dot, Cross, Reflect…

• Mathf class for basic operations

• Random class for RNG

• Transform.position,Transform.lossyScale (+local variants)

• Transform.rotation is a Quaternion

• Transform.forward, Transform.up, Transform.right



Transformations

• Affine Transformations – talk by Jim Van Verth

• Orientation Representation – talk by Jim Van Verth

• Transform Translate/Rotate/Scale

• Look At

http://www.essentialmath.com/GDC2009/AffineXforms2009.ppt
http://www.essentialmath.com/GDC2009/Quaternions2009.ppt


Affine Transformations

• A mapping between affine spaces

• Preserves lines (& planes)

• Preserves parallel lines, but not angles or distances

• Can represent as

𝑇 𝐱 = 𝐀𝐱 + 𝐲



Affine Space

• Collection of points and vectors

• Represented using a frame: < 𝑂, 𝐢, 𝐣 >

• The frame defines a coordinate space

• Vector: 𝐯 = 𝑥𝐢 + 𝑦𝐣 𝑥, 𝑦 ∈ ℝ

• Point: 𝑃 = 𝑥𝐢 + 𝑦𝐣 + 𝑂 𝑥, 𝑦 ∈ ℝ



Affine Transformations

• Maps from space to space by using frames

• Determines how axes change - 𝐀

• Determines how origin changes - 𝐲

𝑇 𝐱 = 𝐀𝐱 + 𝐲



Examples

• Translation: 𝑇 𝐱 = 𝐱 + 𝐭 (axes don’t change)

𝐭 =
𝑡𝑥
𝑡𝑦

• Rotation: 𝑇 𝐱 = 𝐑𝐱 (origin doesn’t change)

𝐑 =
cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

• Scale: 𝑇 𝐱 = 𝐒𝐱 (origin doesn’t change)

𝐒 =
𝑠𝑥 0
0 𝑠𝑦



Combining Transforms

𝑇 𝐱 = 𝐀𝐱 + 𝐲

𝑆 𝐰 = 𝐁𝐰+ 𝐳

𝑆 𝑇 𝐱 = 𝐁 𝐀𝐱 + 𝐲 + 𝐳 = 𝐁𝐀𝐱 + 𝐁𝐲 + 𝐳

• Order dependent! 

𝑆 𝑇 𝐱 ≠ 𝑇 𝑆 𝐱

• Can also do inverse

𝑇−1 𝐳 = 𝐀−1𝐳 − 𝐀−1𝐲



Graphics APIs use matrix form

𝐓 =
𝐀 𝐲

𝟎𝑇 1

• Can then use simple matrix multiplication (column vectors)

𝑇 𝑆 𝑥 = 𝐓 𝐒𝐱

• Is a 4x4 matrix for 3D

• But most engines combine TRS into a single transform

• Translation vector (position in Unity)

• Scale vector (scale in Unity)

• Rotation (rotation in Unity) - Euler angles in Unity, but are quaternions under the hood

• Transform.rotation is of type Quaternion



Unity transform details

• Unity combines all into a 4x4 matrix that’s sent to the GPU for rendering

• GPU takes the mesh vertex position and multiplies with the matrix

• Result is final position in world space

var t = transform;

var matrix = Matrix4x4.TRS(t.localPosition, t.localRotation, t.localScale);

var matrix2 = transform.localToWorldMatrix; // Same result if has no parent

• If the object has a parent, it’s more difficult

• Have to combine all parent transforms (multiply all matrices)

• Result is a single 4x4 matrix to get world space coordinates 

• transform.localToWorldMatrix



Orientation vs Rotation

• Orientation – described as relative to a reference frame

• Rotation – changes object from one orientation to another

• Orientation can be represented as a rotation

• From the reference frame < 𝑂, 𝐢, 𝐣 >

• Representing rotation is tricky in 3D – we need to do

• Concatenation – add two rotations together to get the resulting rotation

• Interpolation – animate between two orientations

• Rotation itself – applying rotation transform to vertex positions



Orientation Representation

Name Concatenation Interpolation Applying 
rotation

Intuitive Example

3x3 matrix Easy, multiply 
matrices

Hard Easy
multiply vector

No 0.41 −0.67 0.61
0.86 0.08 −0.5
0.29 0.74 0.61

Euler angles Hard, can lead 
to gimbal lock

Hard, cannot be 
direct

Easy
convert to 3x3 
matrix

Yes (45°, 30°, 85°)

Axis+Angle Hard Easy Easy
convert to 3x3 
matrix

Yes 𝐯 = 1,0,0
α = 45°

Quaternions Easy Easy
spherical linear 
interpolation 
(slerp)

Easy
convert to 3x3 
matrix

No
𝐪 =

2

2
, 0, 0,

2

2
For 𝐯 = 0,0,1 , α = 45°



Quaternions

• Generalized complex numbers

• In 2D

• A complex number 𝑎 + 𝑏𝐢 that’s normalized: 𝑎2 + 𝑏2 = 1

• Represents rotation of angle α, where a = cos α , 𝑏 = sinα

• A quaternion is the same, but in 3D

• Written as 𝑤 + 𝑥𝐢 + 𝑦𝐣 + 𝑧𝐤 or 𝑤, 𝑥, 𝑦, 𝑧

• When normalized: 𝑤2 + 𝑥2 + 𝑦2 + 𝑧2 = 1

• Represents rotation of angle α around axis (𝑎𝑥, 𝑎𝑦, 𝑎𝑧)

• Where 𝑤, 𝑥, 𝑦, 𝑧 = (cos α, 𝑎𝑥 sin α , 𝑎𝑦 sin α , 𝑎𝑧 sin α)

𝐢2 = 𝐣2 = 𝐤2 = 𝐢𝐣𝐤 = −1

𝐢2 = −1



Quaternions

• Can easily transform into a matrix

• Easy math for rotating vectors without using matrix form: 𝐩′ = 𝐪 𝐩 𝐪−𝟏

• Easy uniform interpolation with slerp

• Unity uses it for all rotations

• For transforms, animation, interpolation…

• Provides easy conversions into it

var q1 = Quaternion.AngleAxis(45, new Vector3(0, 1, 0));

var q2 = Quaternion.Euler(45, 30, 85);

var q3 = Quaternion.Slerp(q1, q2, 0.3f);

var q4 = Quaternion.FromToRotation(Vector3.forward, Vector3.right);

Vector3 newPosition = q4 * transform.position;



Quaternions

• Good to know how they work

• You will never have to do Quaternion math directly

• Can use other formats, engines have support for it

• Always converted to a 4x4 matrix before being used on the GPU



Why 4x4 matrix?

• We want to transform points as well as vectors

• Using a single transform

• We can differentiate between points and vectors:

• Point: 𝑃 = 𝑃𝑥 , 𝑃𝑦 , 𝑃𝑧 , 1
𝑇

• Vector: 𝐯 = 𝑣𝑥 , 𝑣𝑦 , 𝑣𝑧 , 0
𝑇

• And if we combine 3x3 rotation matrix with 3x3 scale matrix and translation 
vector:

𝐌 =
𝑺 ⋅ 𝑹 𝐭
𝟎𝑇 1

• Then all the math works flawlessly!



4x4 matrix allows other transforms

• You can even use non-affine transformations with 4x4 matrices

• And using these, you even can transform points to vectors

• 𝐯 = 𝑎, 𝑏, 𝑐, 0 , 𝐓𝐯 = 𝑃, 𝑃 = (𝑑, 𝑒, 𝑓, 1) (𝐓 – non-affine transform)

• This is then called homogenous coordinates

• For these transformations, you can have a result of 𝑑, 𝑒, 𝑓, 𝑔 , where 𝑔 ≠

{0,1}. In those cases, the resulting point is:

𝑑

𝑔
,
𝑒

𝑔
,
𝑓

𝑔
, 1

• This is used for e.g. perspective camera



3D Transformation Pipeline

• We want to solve 3 problems

• Construct hierarchies of objects – Transformation of object combined with its parents

• Manipulate camera – viewing transformation

• Render object to screen – projection/screen transformation

• We have objects as 3D meshes (list of vertex positions in some space)

• How do they become pixels?



Scene Graph

• Basic structure for hierarchical scenes

• Used almost anywhere for working with 2D/3D objects placed in spaces

• 3D modelling programs

• Offline Renderers used for movies

• All 2D/3D game engines

• even for video editing in some cases

• It is a tree structure – directed acyclic graph

• Nodes can have any number of children



Scene Graph



Object Transformation

• Each scene graph node has an affine transformation

• Affine transform is a combination of Translation, Scale & Rotation

• Affine transform always outputs a 4x4 matrix

• Transform component in Unity

• Final object transformation

• Its own transform

• Multiplied by the parent’s transformation

• Multiplied by the grandparent’s transformation

• …

• The result is a multiplication of several 4x4 matrices

⇒ one 4x4 transformation matrix



Different spaces and transforms

• We determine object positions in the “world” (𝐓𝑀𝑜𝑑𝑒𝑙)

• Created from a hierarchy of transformations – from object through its parents

• By placing the camera in the world, we determine from where we are looking at the world (𝐓𝑉𝑖𝑒𝑤)

• Camera position & direction

• The type of camera (orthographic/perspective) determines our projection 3D ⇒ 2D (𝐓𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛)

• We select the part of the window we render to (𝐓𝑉𝑖𝑒𝑤𝑝𝑜𝑟𝑡)



Spaces in Unity

• Object ⇒ World – taken from object transform (transform.localToWorldMatrix)

• World ⇒ Eye – taken from camera transform (camera.transform.localToWorldMatrix)

• Eye ⇒ NDC – taken from camera parameters

• NDC ⇒ Screen – taken from camera viewport



Real-time Rendering Pipeline

• The GPU renders 3D scenes from triangles

Offline rendering is very different (ray tracing instead of rasterization)



References

• Mathematics for 3D Game Programming and Computer Graphics

• Essential Mathematics for Games and Interactive Applications: A 

Programmer’s Guide

• http://www.essentialmath.com/tutorial.htm

http://www.essentialmath.com/tutorial.htm

	Slide 1: 08 Math for 3D games
	Slide 2: What we need the math for
	Slide 3: Floating point numbers
	Slide 4: Vectors and points
	Slide 5: Vectors and Points - Unity
	Slide 6: Transformations
	Slide 7: Affine Transformations
	Slide 8: Affine Space
	Slide 9: Affine Transformations
	Slide 10: Examples
	Slide 11: Combining Transforms
	Slide 12: Graphics APIs use matrix form
	Slide 13: Unity transform details
	Slide 14: Orientation vs Rotation
	Slide 15: Orientation Representation
	Slide 16: Quaternions
	Slide 17: Quaternions
	Slide 18: Quaternions
	Slide 19: Why 4x4 matrix?
	Slide 20: 4x4 matrix allows other transforms
	Slide 21: 3D Transformation Pipeline
	Slide 22: Scene Graph
	Slide 23: Scene Graph
	Slide 24: Object Transformation
	Slide 25: Different spaces and transforms
	Slide 26: Spaces in Unity
	Slide 27: Real-time Rendering Pipeline
	Slide 28: References

