
09 AI in Games
Tvorba a dizajn počítačových hier

Návrh a vývoj počítačových hier

Michal Ferko

21. 11. 2024



Motivation

• We require opponents/teammates in games

• Non-playing characters are usually required to perform some tasks that 

require AI

• Following the player, combat, strategic thinking…

• We require something that responds to user actions and imitates the 

behavior of human players

• Ideally, an AI should fool the players into thinking it is an actual human

• To keep the immersion level high

• Turing test

2



A little history

• Pac-man (1979) was one of the first games with character 

AI

• Follow the player, run from them, or take a random road

• Used different states – scatter, chase…

• Ghosts had different personalities

• New target tiles are determined by personality at every crossroad

• Randomness added a necessary factor – unpredictable 

behavior

• A completely predictable AI is usually easy to beat

• After a few tries, the player has a detailed model of AI behavior

3



The Kind of AI in games

• Hacks

• Games use a lot of hacks, not only in AI

• Ad hoc solutions to specific problems

• Heuristics – predictions that work most of the time, without guarantees

• Algorithms – the “true” AI

• Techniques that simulate behavior

• Usually derived from how real people or animals make decisions and perform actions

• Machine Learning

• Observe thousands of examples of player behavior

• Derives its own algorithm on what to do

4



Hacks - “Game AI is not AI”

• Is the Pac-man example AI?

• It’s just generating random numbers and performing one of three actions based on the 

result

• It’s not an AI technique

• In Sims, a lot of actions are just pre-defined animation sequences

• There is no actual AI going on

• More complex AI ≠ better AI

5



Heuristics

• Approximate solutions to existing problems

• This is usually how the human mind solves problems

• I lost my keys ⇒ remember when I last had them and go step by step

• Simple heuristic – enemy aim is 90% effective - the chance they will hit you

• Common heuristics

• Most constrained

• If we have two groups fighting, and one character in one group has a unique weapon that pierces through some 

unique armor, it should attack a character wearing that armor

• Most difficult first – if you can buy a strong unit, do it instead of getting a few weak ones

• Most promising first – perform the action that will improve your chances the most

• E.g. Chess AI

6



Algorithms

• Some AI actions still require other algorithms

• Movement of characters

• Decision making

• Tactics or strategy

• Analysis of game state and future game state

7



Academic AI vs. Game AI

• Academic AI – be as smart as possible

• Solve the problem as efficiently and precisely as possible

• E.g. 99.99% guarantee required that a traffic camera identifies license plates correctly

• Game AI - make the player have fun
• Provide interesting challenges for the player

• React to the player

• Be predictable enough for the player

• Be believable enough to keep the illusion of a real being in control

8



Game State Analysis

• Process input data (game state) to simplify the decision process

• This is usually called sensing - you create senses for the AI

• Vision

• Hearing

• Touch

• Smell?

• …

9



Gameplay AI is a 3-step process

1. Sense – what can I see/hear/feel

• Some senses can cheat!

2. Think – consider what I do next based on what I am sensing

• Process data from senses and decide what to do

3. Act – perform actions I have decided to do

• Walk to a destination

• Attack someone

• Use an item

• …

10



AI Difficulty

• For some games, creating skilled AI is simple
• Counter-strike: aim & shoot to kill instantly

• Difficult ≠ Fun
• “Dumb down the AI” – sometimes misses, isn’t perfectly efficient

• Rubber-banding – adjusting to the player to always offer a reasonable challenge
• Trying waiting for 30 seconds in a racing game

• For more complex games, creating challenging AI is a complex task
• StarCraft 2 – there are hundreds of options of what to do at any moment

• Most difficult AI bots cheat, since the AI cannot compete with more skilled players

• Sense & Act is easy, Think is the difficult part

• Chess has a much smaller possibility space
• Can simulate 15-20 moves into the future

11



An example: Sims

• When does a sim become hungry?

• What will the sim do if they really have to go to the bathroom?

• These are several competing systems that are weighted

• Changing these weights alters the behavior of the sim

• Final decisions about the next are strongly affected by the 

weights

• When a sim is about to pass out of hunger

• Getting food becomes top priority

• AI navigation will help move them to the nearest food source

• The weight of the hunger system represents the desire to get food

12



AI types in games

• Hard-coded – deterministic behavior

• If player health above 80, fire gun at player

• Randomization – randomized behavior

• If player health above 70-80, fire gun

• Less predictable, more realistic

• Weighted randoms – every possible next step is given a weight

• Some of the possibilities will happen more often than others

• Weights control what happens in the end

13



Weighted randoms example

• We have a creature that can perform 3 actions

• We assign weight to these actions

• Attack 60%, Cast spell 30%, Run away 10%

• Very similar to the Sims example, but those weights change over time

X = RandomFromRange(0, 99);

if (X < 60)

Attack();

else if (X < 90)

CastSpell();

else RunAway();

14



Finite State Machines (FSM)

• Several states an entity can be in (sleeping, wary, attacking, running away…)

• We define rules to transition from one state to another

• There does not have to be a transition from each state into every other state

• The transition running away ⇒ sleeping does not make sense

• We define when transitions from one state to another should happen

15



Finite State Machines (2)

• Based on the current state of the entity, perform an action

• Patrol ⇒ walk through corridors along a pre-defined path

• Attack ⇒ move continuously towards the player while shooting

• A proximity mine can use the same “proximity” check as the guard

• If near, move to state X

16



Finite State Machines (3)

• Decision making is encapsulated in the transition rules

• Transition rules can incorporate a certain degree of randomization

• Such as an enemy running away at less than 15-25% health

• This is called reactive AI – always react to a game event

• The other type is active AI – constantly look for the best option

• A sim in Sims

• An AI opponent in Starcraft 2

17



Decision trees

• Decision trees are a simple way of representing decision making

• The inner nodes of a decision tree are decisions with only two possible 

answers: Yes or No

• Leaf nodes are action nodes

• Other nodes have two children

• one for the Yes answer, one for the No answer

• We traverse the tree from root

1. Evaluate conditions till you get to a leaf node

2. Perform the action of the leaf node

18



Decision trees (2)

• Apply an action every time a decision needs to be made

• Decision trees can be shared, as can be individual nodes

• Decision trees are sometimes built-in visual tools

• Programmers write code for decision nodes and action nodes

• (AI) designers connect these to build an actual tree – the AI “mind”

• With each decision we ignore a whole sub-tree

• This is relatively efficient even for hundreds of nodes

• The decision might take several frames to decide

• Save the node in which decision making is paused

• Resume tree traversal in the next frame (decisions might be delayed)

19



Decision trees (3)

• Can also be non-binary

20



Behavior Trees

• Widely used in games

• It’s a tree composed of nodes

• Each node can return a status to its parent
• Success – the operation of this node finished successfully

• Failure – the operation failed

• Running – the operation is still running

• Nodes can have parameters

• Nodes can respond to context
• Game state

• Available in Unity as a package
• Unity Behavior

• Built-in support in Unreal

21

https://docs.unity3d.com/Packages/com.unity.behavior@1.0/manual/index.html


Behavior Trees (2)

• Leaf nodes represent actions

• State: Running, Success or Failure

• E.g. Open a door, Run towards the player

• Composite nodes (Sequence, Selector…)

• Encapsulate multiple children

• Execute children in some order

• Returns what is returned from children

• Decorator nodes (Inverter, Repeater…)

• Have a single child node

• Transform result from the child, repeat, terminate

• E.g. 

22



Behavior Trees – Actions

• Action Walk

• Parameters

• Character

• Destination – location or another character

• Running On the way

• Success Reached destination

• Failure Failed to reach destination (blocked/died/stunned…)

• Init – called the first time the node is visited

• Process/Update – called every tick while the node is “running”

23



Halo 2

24



Fuzzy logic

• Decision trees work quite well, but it’s not realistic enough

• Using absolute threshold values to decide

• There should be a range of values that allow for both decisions to happen

• Proximity test

• 5 meters is still too far sometimes

• 7 meters is close enough sometimes

• The idea of fuzzy logic is that objects belong to multiple fuzzy sets by 

different amounts

• A player partially behind cover can be in sets “in cover” as well as “exposed”, however 

we assign percentages for each set ⇒ 60% in cover, 40% exposed

25



Fuzzy logic (2)

• The process of assigning the degrees of membership is called fuzzification

• In order to decide, we might have to defuzzify the membership degrees and 

give an exact result to which set we fully belong

• Simple fuzzification:

• Cutoff values for fully belonging to a set

• Proximity ⇒ 2 sets “near” and “far”

• 4 meters = near, 7 meters = far

• between 4 and 7 meters

• weighted randomness decides

26



Fuzzy logic (3)

• Defuzzification is much harder

• From several degrees, we must choose the correct one

• Just generating a random number and considering which set is more likely to occur can 

work is some situations

• We cannot just take the set with the highest degree

• fuzziness provides a chance for something unlikely to happen

• If the result is just a number, it is much easier to defuzzify

• An AI might be cautious, when combined with the fact that the player is behind cover, we 

generate a number that says how long the AI will take to aim

• For boolean values, we determine a cutoff and then compare it to the degree

27



Fuzzy logic (4)

• The real power comes from rapid AI prototyping

• If (distance < 20 AND health > 1) then Attack()

• If (player is close AND I am healthy) then Attack()

• We are using two fuzzy sets in the example

• We need to redefine the AND, OR and NOT operators for fuzzy sets

• It’s no longer Boolean logic

AND → 𝑃 = min 𝐴, 𝐵

OR → 𝑃 = max(𝐴, 𝐵)

𝐴, 𝐵 − degrees of membership

𝑃 − final probability

28



Utility theory

• “Utility theory says that every state has a degree of usefulness, or utility, to 

an agent and that the agent will prefer states with higher utility.”

• We take the current world state, think of what would happen if we 

performed some action

• What changes in the world state can be used to derive how much that 

agent improved its “happiness”

• Actions with the highest utility value are chosen and performed

29



Utility theory – examples

• Chess is perfect for executing Utility theory

• If one action causes me to lose an important piece 

in the next move ⇒ most likely low utility value

• There are exceptions of course

• Predict all possible outcomes in the next few steps

• Choose the step maximizing the utility value

• A strategy game considers multiple things

• Troop strength

• Base/worker safety

• Estimated enemy strength

• Research level, amount of resources

30



Utility theory in practice

1. Make a copy of the game state

2. Perform the action (can take several seconds)

3. Evaluate what happened – how did utility change

• Might require player prediction

• Usually localized decisions – the entire game state is not needed

• In Sims, a sim usually cares only about themselves

• If the sim is hungry, eating will improve his happiness the most

• So they go to the kitchen

• In FPS games, the agents have simple utility preferences

• Agents will be preferring states where they continue to live

• And prefer when the player will have low health as a result of their actions

31



Goal-oriented action planning (GOAP)

• Utility theory decides what an agent wants to do, not HOW to do it

• GOAP is working with goals – desirable world states 
• the agent wants to achieve these states by performing actions

• Simple goal: kill the player
• Attacking the player is one action that achieves this

• An agent has multiple goals, but usually only one active at a time

• Two-stage process:
• Goal selection – pick the most relevant goal

• Execution – solve the goal by executing actions

• Goal selection is solved using other methods
• Decision trees, utility theory, …

• The second stage needs a special solution

32

https://www.gamedeveloper.com/programming/postmortem-AI-action-planning-
on-Assassins-Creed-Odyssey-and-Immortals-Fenyx-Rising-

https://www.gamedeveloper.com/programming/postmortem-AI-action-planning-on-Assassins-Creed-Odyssey-and-Immortals-Fenyx-Rising-
https://www.gamedeveloper.com/programming/postmortem-AI-action-planning-on-Assassins-Creed-Odyssey-and-Immortals-Fenyx-Rising-


GOAP (2)

• Say a character is hungry

• You have no food, so you need to create a plan to obtain food

• Could be going into the woods to hunt animals, then extract the meat, cook it, and finally eat it

• Each action has a set of conditions it can satisfy, as well as a set of prerequisites that 
need to be satisfied

• Eating food requires cooking food

• Cooking food requires having raw food

• Having raw food requires buying raw food

• Buying food requires money

• Money requires a job

• The algorithm walks back through these preconditions and identifies which actions need 
to be executed

33



GOAP (3)

• A sequence of goals might not exist

• There are lots of problems with world representation (not only for GOAP)

• I desire a world state in which I am not hungry

• I desire a world state in which the player is dead

• We need to generate this world state with preconditions and effects

• Search for the shortest (or least difficult) path in a graph of actions

• There are many ways to solve a goal

• We always walk back from the desired state to the current state

• Trying to find a way that could work

• Quite advanced, but allows for very “intelligent” AI

34



Path-finding

• Not really an AI technique, more of a support 

technique for other AI

• Simply searching for the shortest path from A to B

• We have nodes and edges

• Nodes describe points that the agent must be able to 

reach

• Nodes are connected by edges – straight lines

• An agent moves along an edge to get to another node

• To get to a neighboring node, you just rotate the 

agent and move them along the corresponding edge

35

Image from https://en.wikipedia.org/wiki/Pathfinding

https://en.wikipedia.org/wiki/Pathfinding


Path-finding (2)

• Moving along straight lines is highly unnatural

• Except for robots maybe

• Nodes may be in a grid, resulting in not very smooth motion

• A few possibilities to avoid this:

• Irregularly placed nodes

• Allow each node to have a tolerance as to how close the agent must be to consider 

that they visited the node

• Placing an interpolation curve (e.g. piecewise bezier curve) through the nodes

36



Path-finding (3)

• Edges may be unidirectional, bidirectional, even weighted

• Higher weight means a harder to pass route

• Weights could even be different for different types of agents

• Flying units versus ground units, or units that can walk up cliffs

• Results in different paths taken by different agents

• Weights can be dynamic

• Building something on top of existing nodes sets the weight to infinity

• Flying units might try to avoid guard towers, so the guard towers increase the weight of 

nearby edges

37



A* path-finding (aka. A-star)

• There are lots of algorithms that solve the path-finding problem

• A* is the most used one

• Relatively fast to compute

• Has lots of modifications

https://en.wikipedia.org/wiki/A*_search_algorithm

38

https://en.wikipedia.org/wiki/A*_search_algorithm


Path-finding – taking it a step further

• Another common technique is called a 
navigation mesh (navmesh)

• It is a simple mesh that describes all walkable 

terrain in the level

• Can be artist generated

• Much better is when it’s generated automatically

• Might require some tweaking by artists or designers

• Triangles are nodes, edges are between 

neighboring triangles

• A* can be used, we just have to set the tolerance 
values based on the triangles

39



AI in Unity

• Limited AI support without plugins

• Can use Unity Behavior for Behavior Trees

• Can use Unity’s Animator for Finite State Machines

• Can use Visual Scripting for Finite State Machines

• Has ML Agents package for reinforced learning

• Making your own is not that hard for simple games

• Other free/paid plugins: Behavior Designer, NodeCanvas, Apex Utility AI…

• Writing it yourself (no visual representation) is also OK

• But think about configurability & the potential to modify it

40



AI in Unity

• Unity has built-in support for NavMesh Path-finding

• Static NavMeshes

• Dynamic obstacles and priorities

• Rebuild NavMesh dynamically

• Only for 3D

• For 2D

• Use NavMeshPlus – https://github.com/h8man/NavMeshPlus

• Built on top of Unity’s 3D NavMesh

• Use A* Pathfinding Project - has a free/paid version – https://arongranberg.com/astar/

41

https://github.com/h8man/NavMeshPlus
https://arongranberg.com/astar/


References

• McShaffry, M., and Graham, D. Game Coding Complete, Fourth Edition. 

Course Technology PTR, 2012.

• Millington, Ian, and John D. Funge. Artificial intelligence for games. 

Burlington, MA: Morgan Kaufmann/Elsevier, 2009. Print.

• https://www.gamedeveloper.com/programming/behavior-trees-for-ai-how-

they-work

• https://www.gamedeveloper.com/programming/postmortem-AI-action-

planning-on-Assassins-Creed-Odyssey-and-Immortals-Fenyx-Rising-

42

https://www.gamedeveloper.com/programming/behavior-trees-for-ai-how-they-work
https://www.gamedeveloper.com/programming/behavior-trees-for-ai-how-they-work
https://www.gamedeveloper.com/programming/postmortem-AI-action-planning-on-Assassins-Creed-Odyssey-and-Immortals-Fenyx-Rising-
https://www.gamedeveloper.com/programming/postmortem-AI-action-planning-on-Assassins-Creed-Odyssey-and-Immortals-Fenyx-Rising-

	Slide 1: 09 AI in Games
	Slide 2: Motivation
	Slide 3: A little history
	Slide 4: The Kind of AI in games
	Slide 5: Hacks - “Game AI is not AI”
	Slide 6: Heuristics
	Slide 7: Algorithms
	Slide 8: Academic AI vs. Game AI
	Slide 9: Game State Analysis
	Slide 10: Gameplay AI is a 3-step process
	Slide 11: AI Difficulty
	Slide 12: An example: Sims
	Slide 13: AI types in games
	Slide 14: Weighted randoms example
	Slide 15: Finite State Machines (FSM)
	Slide 16: Finite State Machines (2)
	Slide 17: Finite State Machines (3)
	Slide 18: Decision trees
	Slide 19: Decision trees (2)
	Slide 20: Decision trees (3)
	Slide 21: Behavior Trees
	Slide 22: Behavior Trees (2)
	Slide 23: Behavior Trees – Actions
	Slide 24: Halo 2
	Slide 25: Fuzzy logic
	Slide 26: Fuzzy logic (2)
	Slide 27: Fuzzy logic (3)
	Slide 28: Fuzzy logic (4)
	Slide 29: Utility theory
	Slide 30: Utility theory – examples
	Slide 31: Utility theory in practice
	Slide 32: Goal-oriented action planning (GOAP)
	Slide 33: GOAP (2)
	Slide 34: GOAP (3)
	Slide 35: Path-finding
	Slide 36: Path-finding (2)
	Slide 37: Path-finding (3)
	Slide 38: A* path-finding (aka. A-star)
	Slide 39: Path-finding – taking it a step further
	Slide 40: AI in Unity
	Slide 41: AI in Unity
	Slide 42: References

